-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetric.py
47 lines (34 loc) · 1.44 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score
from scipy.stats import chisquare
__all__ = ['ConfusionMatrix']
class ConfusionMatrix():
def __init__(self, pred, target, is_prob=False):
self.pom = []
if is_prob:
self.pom = F.softmax(pred, dim=1)[:,1].cpu()
pred = pred.argmax(dim=1)
pred[pred==2] = 0
self.target = target.view_as(pred).cuda()
self.tp = (pred * self.target).sum().item()
self.fp = (pred * (1-self.target)).sum().item()
self.fn = ((1-pred) * self.target).sum().item()
self.tn = ((1-pred) * (1-self.target)).sum().item()
self.pred = pred.cpu()
def calc_accuracy(self):
return (self.tp + self.tn) / (self.tp + self.tn + self.fp + self.fn)
def calc_sensitivity(self):
return self.tp / (self.tp + self.fn)
def calc_specificity(self):
return self.tn / (self.tn + self.fp)
def calc_precision(self):
return self.tp / (self.tp + self.fp)
def calc_F1_score(self):
return 2 * self.tp / (2 * self.tp + self.fp + self.fn)
def calc_roc_auc(self):
if len(self.pom): return roc_auc_score(self.target.cpu(), self.pom)
def calc_p_value(self):
if len(self.pom): return chisquare(self.pom*10+5, self.target.cpu()*10+5).pvalue
def __str__(self):
return f'TP: {self.tp} TN: {self.tn} FP: {self.fp} FN: {self.fn}'