forked from MingtaoFu/gliding_vertex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtxt2json.py
205 lines (182 loc) · 4.88 KB
/
txt2json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# encoding=utf-8
"""
@author Mingtao Fu
"""
import os
import json
from PIL import Image
import numpy as np
import random
np.random.seed( 3 )
random.seed( 3 )
categories = [
{
"supercategory": "none",
"id": 1,
"name": "plane"
}, {
"supercategory": "none",
"id": 2,
"name": "baseball-diamond"
}, {
"supercategory": "none",
"id": 3,
"name": "bridge"
}, {
"supercategory": "none",
"id": 4,
"name": "ground-track-field"
}, {
"supercategory": "none",
"id": 5,
"name": "small-vehicle"
}, {
"supercategory": "none",
"id": 6,
"name": "large-vehicle"
}, {
"supercategory": "none",
"id": 7,
"name": "ship"
}, {
"supercategory": "none",
"id": 8,
"name": "tennis-court"
}, {
"supercategory": "none",
"id": 9,
"name": "basketball-court"
}, {
"supercategory": "none",
"id": 10,
"name": "storage-tank"
}, {
"supercategory": "none",
"id": 11,
"name": "soccer-ball-field"
}, {
"supercategory": "none",
"id": 12,
"name": "roundabout"
}, {
"supercategory": "none",
"id": 13,
"name": "harbor"
}, {
"supercategory": "none",
"id": 14,
"name": "swimming-pool"
}, {
"supercategory": "none",
"id": 15,
"name": "helicopter"
}
]
class_dict = {
'plane': 1,
'baseball-diamond': 2,
'bridge': 3,
'ground-track-field': 4,
'small-vehicle': 5,
'large-vehicle': 6,
'ship': 7,
'tennis-court': 8,
'basketball-court': 9,
'storage-tank': 10,
'soccer-ball-field': 11,
'roundabout': 12,
'harbor': 13,
'swimming-pool': 14,
'helicopter': 15
}
def polygon_area( corners ):
n = len( corners ) # of corners
area = 0.0
for i in range( n ):
j = ( i + 1 ) % n
area += corners[i][0] * corners[j][1]
area -= corners[j][0] * corners[i][1]
area = abs( area ) / 2.0
return area
_image_id = 0
_gt_id = 0
def txt2json( src, key, obj ):
global _image_id
global _gt_id
img_src = os.path.join( src, "images", key + ".png" )
width, height = Image.open( img_src ).size
file_name = os.path.basename( img_src )
_image_id += 1
obj["images"].append({
"file_name": file_name,
"width": width,
"height": height,
"id": _image_id
})
txt_src = os.path.join( src, "labelTxt", key + ".txt" )
if not os.path.exists( txt_src):
return
with open( txt_src ) as f:
lines = f.readlines()
for line in lines:
line = line.strip()
splits = line.split( " " )
x1 = int( float( splits[0] ) )
y1 = int( float( splits[1] ) )
x2 = int( float( splits[2] ) )
y2 = int( float( splits[3] ) )
x3 = int( float( splits[4] ) )
y3 = int( float( splits[5] ) )
x4 = int( float( splits[6] ) )
y4 = int( float( splits[7] ) )
xmin = min( x1, x2, x3, x4 )
xmax = max( x1, x2, x3, x4 )
ymin = min( y1, y2, y3, y4 )
ymax = max( y1, y2, y3, y4 )
name = splits[8]
diff = int( splits[9] )
category_id = class_dict[name]
_gt_id += 1
segmentation = [x1, y1, x2, y2, x3, y3, x4, y4]
corners = [( x1, y1 ), ( x4, y4 ), ( x3, y3 ), ( x2, y2 )]
gt = {
"ignore": diff,
"segmentation": [segmentation],
"area": polygon_area( corners ),
"iscrowd": 0,
"bbox": [xmin, ymin, xmax - xmin, ymax - ymin],
"image_id": _image_id,
"category_id": category_id,
"id": _gt_id
}
obj["annotations"].append( gt )
def convert( imagelist, src, dst ):
obj = {
"images": [],
"type": "instances",
"annotations": [],
"categories": categories
}
for k in imagelist:
for key in imagelist[k]:
txt2json( src, key, obj )
with open( dst, "w" ) as f:
json.dump( obj, f )
def collect_unaug_dataset( txtdir ):
txts = os.listdir( txtdir )
img_dic = {}
for cls in class_dict:
img_dic[cls] = []
for txt in txts:
dic = {}
for cls in class_dict:
dic[cls] = False
with open( os.path.join( txtdir, txt ) ) as f:
lines = f.readlines()
for line in lines:
cls = line.split( " " )[-2]
dic[cls] = True
for key in dic:
if dic[key]:
img_dic[key].append( txt[:-4] )
return img_dic