From b795ecc205052064e76dcad2893da771b634dd0a Mon Sep 17 00:00:00 2001 From: gladkia <41166437+gladkia@users.noreply.github.com> Date: Wed, 22 Jan 2025 10:38:21 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20pages=20from=20@=20gdrplatform?= =?UTF-8?q?/gDRcore@f6235edac2bf7ae6dc4ca64c73d9231cefc0555a=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/404.html | 2 +- docs/PULL_REQUEST_TEMPLATE.html | 2 +- docs/articles/gDR-annotation.html | 4 +- docs/articles/gDR-data-model.html | 4 +- docs/articles/gDRcore.html | 20 ++- docs/articles/index.html | 2 +- docs/authors.html | 6 +- docs/index.html | 2 +- docs/news/index.html | 6 +- docs/pkgdown.yml | 2 +- docs/reference/add_intermediate_data.html | 2 +- .../reference/annotate_dt_with_cell_line.html | 2 +- docs/reference/annotate_dt_with_drug.html | 2 +- docs/reference/calculate_GR_value.html | 2 +- docs/reference/calculate_excess.html | 2 +- docs/reference/calculate_matrix_metric.html | 2 +- docs/reference/calculate_score.html | 2 +- docs/reference/cleanup_metadata.html | 2 +- docs/reference/convert_mae_to_raw_data.html | 2 +- docs/reference/convert_se_to_raw_data.html | 2 +- docs/reference/data_model.character.html | 2 +- docs/reference/data_model.data.table.html | 2 +- docs/reference/data_model.html | 2 +- docs/reference/do_skip_step.html | 2 +- docs/reference/dot-map_references.html | 2 +- docs/reference/dot-standardize_conc.html | 2 +- docs/reference/fit_SE.combinations.html | 2 +- docs/reference/gDRcore-package.html | 2 +- docs/reference/generateCodilution.html | 2 +- docs/reference/generateCodilutionSmall.html | 2 +- docs/reference/generateComboMatrix.html | 2 +- docs/reference/generateComboMatrixSmall.html | 2 +- docs/reference/generateComboNoNoiseData.html | 2 +- docs/reference/generateComboNoNoiseData2.html | 2 +- docs/reference/generateComboNoNoiseData3.html | 2 +- docs/reference/generateLigandData.html | 2 +- docs/reference/generateMediumData.html | 2 +- docs/reference/generateNoNoiseRawData.html | 2 +- docs/reference/generateNoiseRawData.html | 2 +- docs/reference/generateTripleComboMatrix.html | 2 +- .../get_assays_per_pipeline_step.html | 2 +- docs/reference/get_cell_line_annotation.html | 2 +- .../get_cellline_annotation_from_dt.html | 2 +- .../get_default_nested_identifiers.html | 2 +- docs/reference/get_drug_annotation.html | 2 +- .../get_drug_annotation_from_dt.html | 2 +- .../get_mae_from_intermediate_data.html | 2 +- docs/reference/get_pipeline_steps.html | 2 +- docs/reference/get_relevant_ids.html | 2 +- docs/reference/grr_matches.html | 2 +- docs/reference/identify_data_type.html | 2 +- docs/reference/identify_keys.html | 2 +- docs/reference/index.html | 7 +- docs/reference/is_preceding_step.html | 2 +- .../map_conc_to_standardized_conc.html | 2 +- docs/reference/map_df.html | 4 +- docs/reference/map_ids_to_fits.html | 2 +- docs/reference/map_untreated.html | 2 +- docs/reference/merge_data.html | 50 +++--- docs/reference/order_result_df.html | 2 +- .../prepare_input.MultiAssayExperiment.html | 2 +- docs/reference/prepare_input.data.table.html | 2 +- docs/reference/prepare_input.html | 50 +++--- docs/reference/process_perturbations.html | 2 +- docs/reference/read_intermediate_data.html | 2 +- docs/reference/remove_drug_batch.html | 106 ------------- .../replace_conc_with_standardized_conc.html | 2 +- ...runDrugResponseProcessingPipelineFxns.html | 150 +++++++++--------- docs/reference/save_intermediate_data.html | 2 +- docs/reference/split_raw_data.html | 2 +- docs/reference/test_synthetic_data.html | 2 +- .../validate_data_models_availability.html | 2 +- docs/search.json | 2 +- docs/sitemap.xml | 3 - 74 files changed, 211 insertions(+), 323 deletions(-) delete mode 100644 docs/reference/remove_drug_batch.html diff --git a/docs/404.html b/docs/404.html index f7c36307..ae4560af 100644 --- a/docs/404.html +++ b/docs/404.html @@ -24,7 +24,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/PULL_REQUEST_TEMPLATE.html b/docs/PULL_REQUEST_TEMPLATE.html index c0c2033a..387db64e 100644 --- a/docs/PULL_REQUEST_TEMPLATE.html +++ b/docs/PULL_REQUEST_TEMPLATE.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/articles/gDR-annotation.html b/docs/articles/gDR-annotation.html index e7da8097..6a3b1623 100644 --- a/docs/articles/gDR-annotation.html +++ b/docs/articles/gDR-annotation.html @@ -26,7 +26,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -269,7 +269,7 @@ SessionInfo#> #> loaded via a namespace (and not attached): #> [1] vctrs_0.6.5 cli_3.6.3 knitr_1.45 -#> [4] rlang_1.1.4 xfun_0.42 stringi_1.8.4 +#> [4] rlang_1.1.5 xfun_0.42 stringi_1.8.4 #> [7] purrr_1.0.2 textshaping_0.3.7 jsonlite_1.8.9 #> [10] glue_1.8.0 htmltools_0.5.7 ragg_1.2.7 #> [13] sass_0.4.8 rmarkdown_2.25 evaluate_0.23 diff --git a/docs/articles/gDR-data-model.html b/docs/articles/gDR-data-model.html index 76672edb..a7ea5eae 100644 --- a/docs/articles/gDR-data-model.html +++ b/docs/articles/gDR-data-model.html @@ -26,7 +26,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -306,7 +306,7 @@ Session info## ## loaded via a namespace (and not attached): ## [1] vctrs_0.6.5 cli_3.6.3 knitr_1.45 -## [4] rlang_1.1.4 xfun_0.42 stringi_1.8.4 +## [4] rlang_1.1.5 xfun_0.42 stringi_1.8.4 ## [7] purrr_1.0.2 textshaping_0.3.7 jsonlite_1.8.9 ## [10] glue_1.8.0 htmltools_0.5.7 ragg_1.2.7 ## [13] sass_0.4.8 rmarkdown_2.25 evaluate_0.23 diff --git a/docs/articles/gDRcore.html b/docs/articles/gDRcore.html index 3c48229c..3e1eafc8 100644 --- a/docs/articles/gDRcore.html +++ b/docs/articles/gDRcore.html @@ -26,7 +26,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -176,9 +176,7 @@ Data preprocessing -td <- gDRimport::get_test_data() -#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : -#> object 'type_sum.accel' not found +td <- gDRimport::get_test_data() Provided dataset needs to be merged into the one data.table object to be able to run gDR pipeline. This process can be done using two functions – @@ -267,15 +265,15 @@ SessionInfo#> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: -#> [1] gDRcore_1.5.3 gDRtestData_1.5.1 BiocStyle_2.30.0 +#> [1] gDRcore_1.5.4 gDRtestData_1.5.1 BiocStyle_2.30.0 #> #> loaded via a namespace (and not attached): #> [1] bitops_1.0-9 fastmap_1.1.1 #> [3] RCurl_1.98-1.16 BumpyMatrix_1.10.0 -#> [5] TH.data_1.1-2 digest_0.6.34 -#> [7] lifecycle_1.0.4 gDRutils_1.5.5 +#> [5] TH.data_1.1-3 digest_0.6.34 +#> [7] lifecycle_1.0.4 gDRutils_1.5.6 #> [9] survival_3.5-5 magrittr_2.0.3 -#> [11] compiler_4.3.0 rlang_1.1.4 +#> [11] compiler_4.3.0 rlang_1.1.5 #> [13] sass_0.4.8 drc_3.0-1 #> [15] tools_4.3.0 plotrix_3.8-4 #> [17] yaml_2.3.8 data.table_1.16.4 @@ -288,7 +286,7 @@ SessionInfo#> [31] colorspace_2.1-1 scales_1.3.0 #> [33] MASS_7.3-58.4 gtools_3.9.5 #> [35] MultiAssayExperiment_1.28.0 SummarizedExperiment_1.32.0 -#> [37] cli_3.6.3 mvtnorm_1.3-2 +#> [37] cli_3.6.3 mvtnorm_1.3-3 #> [39] rmarkdown_2.25 crayon_1.5.3 #> [41] ragg_1.2.7 readxl_1.4.3 #> [43] cachem_1.0.8 stringr_1.5.1 @@ -296,7 +294,7 @@ SessionInfo#> [47] gDRimport_1.5.4 assertthat_0.2.1 #> [49] parallel_4.3.0 formatR_1.14 #> [51] BiocManager_1.30.22 cellranger_1.1.0 -#> [53] XVector_0.42.0 matrixStats_1.4.1 +#> [53] XVector_0.42.0 matrixStats_1.5.0 #> [55] vctrs_0.6.5 Matrix_1.6-5 #> [57] sandwich_3.1-1 jsonlite_1.8.9 #> [59] carData_3.0-5 bookdown_0.37 @@ -308,7 +306,7 @@ SessionInfo#> [71] codetools_0.2-19 stringi_1.8.4 #> [73] futile.logger_1.4.3 GenomeInfoDb_1.38.8 #> [75] GenomicRanges_1.54.1 munsell_0.5.1 -#> [77] tibble_3.2.1 pillar_1.10.0 +#> [77] tibble_3.2.1 pillar_1.10.1 #> [79] htmltools_0.5.7 brio_1.1.4 #> [81] GenomeInfoDbData_1.2.11 R6_2.5.1 #> [83] textshaping_0.3.7 evaluate_0.23 diff --git a/docs/articles/index.html b/docs/articles/index.html index f7562816..241c118f 100644 --- a/docs/articles/index.html +++ b/docs/articles/index.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/authors.html b/docs/authors.html index 97b391b5..723b02a1 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -102,7 +102,7 @@ Authors Citation Source: DESCRIPTION - Czech B, Gladki A, Hafner M, Piatkowski P, Potocka N, Scigocki D, Smola J, Mocanu S, Kamianowski M, Vuong A (2024). + Czech B, Gladki A, Hafner M, Piatkowski P, Potocka N, Scigocki D, Smola J, Mocanu S, Kamianowski M, Vuong A (2025). gDRcore: Processing functions and interface to process and analyze drug dose-response data. https://github.com/gdrplatform/gDRcore, https://gdrplatform.github.io/gDRcore/. @@ -111,7 +111,7 @@ Citation title = {gDRcore: Processing functions and interface to process and analyze drug dose-response data}, author = {Bartosz Czech and Arkadiusz Gladki and Marc Hafner and Pawel Piatkowski and Natalia Potocka and Dariusz Scigocki and Janina Smola and Sergiu Mocanu and Marcin Kamianowski and Allison Vuong}, - year = {2024}, + year = {2025}, note = {https://github.com/gdrplatform/gDRcore, https://gdrplatform.github.io/gDRcore/}, } diff --git a/docs/index.html b/docs/index.html index ce6af2a5..ec142749 100644 --- a/docs/index.html +++ b/docs/index.html @@ -30,7 +30,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/news/index.html b/docs/news/index.html index 1c6a3be7..71a2d7b1 100644 --- a/docs/news/index.html +++ b/docs/news/index.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -54,6 +54,10 @@ Source: NEWS.md + +gDRcore 1.5.4 - 2025-01-13 +switch to gDRutils::remove_drug_batch function + gDRcore 1.5.3 - 2024-12-18 fix melt error after changed intersect behaviour diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 92430e98..e5a27d64 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -5,7 +5,7 @@ articles: gDR-annotation: gDR-annotation.html gDR-data-model: gDR-data-model.html gDRcore: gDRcore.html -last_built: 2024-12-18T16:03Z +last_built: 2025-01-22T10:37Z urls: reference: https://gdrplatform.github.io/gDRcore/reference article: https://gdrplatform.github.io/gDRcore/articles diff --git a/docs/reference/add_intermediate_data.html b/docs/reference/add_intermediate_data.html index 7cac0b04..69fea025 100644 --- a/docs/reference/add_intermediate_data.html +++ b/docs/reference/add_intermediate_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/annotate_dt_with_cell_line.html b/docs/reference/annotate_dt_with_cell_line.html index fc7220ea..f4d2bd67 100644 --- a/docs/reference/annotate_dt_with_cell_line.html +++ b/docs/reference/annotate_dt_with_cell_line.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/annotate_dt_with_drug.html b/docs/reference/annotate_dt_with_drug.html index 8cb0216c..e629f5cd 100644 --- a/docs/reference/annotate_dt_with_drug.html +++ b/docs/reference/annotate_dt_with_drug.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/calculate_GR_value.html b/docs/reference/calculate_GR_value.html index db022d75..e09e5ae7 100644 --- a/docs/reference/calculate_GR_value.html +++ b/docs/reference/calculate_GR_value.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/calculate_excess.html b/docs/reference/calculate_excess.html index 51057e1d..5a30059a 100644 --- a/docs/reference/calculate_excess.html +++ b/docs/reference/calculate_excess.html @@ -12,7 +12,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/calculate_matrix_metric.html b/docs/reference/calculate_matrix_metric.html index 0b5ec832..a6ec7864 100644 --- a/docs/reference/calculate_matrix_metric.html +++ b/docs/reference/calculate_matrix_metric.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/calculate_score.html b/docs/reference/calculate_score.html index 246f3e2a..4a4be278 100644 --- a/docs/reference/calculate_score.html +++ b/docs/reference/calculate_score.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/cleanup_metadata.html b/docs/reference/cleanup_metadata.html index f9ce281a..c3359200 100644 --- a/docs/reference/cleanup_metadata.html +++ b/docs/reference/cleanup_metadata.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/convert_mae_to_raw_data.html b/docs/reference/convert_mae_to_raw_data.html index 16b99a85..d356c7a7 100644 --- a/docs/reference/convert_mae_to_raw_data.html +++ b/docs/reference/convert_mae_to_raw_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/convert_se_to_raw_data.html b/docs/reference/convert_se_to_raw_data.html index 2d2565f7..903e1963 100644 --- a/docs/reference/convert_se_to_raw_data.html +++ b/docs/reference/convert_se_to_raw_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/data_model.character.html b/docs/reference/data_model.character.html index 71cb68de..9458e414 100644 --- a/docs/reference/data_model.character.html +++ b/docs/reference/data_model.character.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/data_model.data.table.html b/docs/reference/data_model.data.table.html index d7f35e7d..a8c4e878 100644 --- a/docs/reference/data_model.data.table.html +++ b/docs/reference/data_model.data.table.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/data_model.html b/docs/reference/data_model.html index 077fb00d..9ea099fc 100644 --- a/docs/reference/data_model.html +++ b/docs/reference/data_model.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/do_skip_step.html b/docs/reference/do_skip_step.html index 9d93c8a3..09597205 100644 --- a/docs/reference/do_skip_step.html +++ b/docs/reference/do_skip_step.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/dot-map_references.html b/docs/reference/dot-map_references.html index 9fdf7d39..8971a863 100644 --- a/docs/reference/dot-map_references.html +++ b/docs/reference/dot-map_references.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/dot-standardize_conc.html b/docs/reference/dot-standardize_conc.html index afe272a7..fe835546 100644 --- a/docs/reference/dot-standardize_conc.html +++ b/docs/reference/dot-standardize_conc.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/fit_SE.combinations.html b/docs/reference/fit_SE.combinations.html index 931f2ba3..31854c97 100644 --- a/docs/reference/fit_SE.combinations.html +++ b/docs/reference/fit_SE.combinations.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/gDRcore-package.html b/docs/reference/gDRcore-package.html index 49b922f2..a4c64045 100644 --- a/docs/reference/gDRcore-package.html +++ b/docs/reference/gDRcore-package.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateCodilution.html b/docs/reference/generateCodilution.html index 43321f30..a589aab9 100644 --- a/docs/reference/generateCodilution.html +++ b/docs/reference/generateCodilution.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateCodilutionSmall.html b/docs/reference/generateCodilutionSmall.html index 3b848408..d499649d 100644 --- a/docs/reference/generateCodilutionSmall.html +++ b/docs/reference/generateCodilutionSmall.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateComboMatrix.html b/docs/reference/generateComboMatrix.html index aa075e8b..5cb3a0d2 100644 --- a/docs/reference/generateComboMatrix.html +++ b/docs/reference/generateComboMatrix.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateComboMatrixSmall.html b/docs/reference/generateComboMatrixSmall.html index b020c2c3..32a3bab6 100644 --- a/docs/reference/generateComboMatrixSmall.html +++ b/docs/reference/generateComboMatrixSmall.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateComboNoNoiseData.html b/docs/reference/generateComboNoNoiseData.html index 3011ab11..21b0042c 100644 --- a/docs/reference/generateComboNoNoiseData.html +++ b/docs/reference/generateComboNoNoiseData.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateComboNoNoiseData2.html b/docs/reference/generateComboNoNoiseData2.html index 7428a667..f2b4dc6a 100644 --- a/docs/reference/generateComboNoNoiseData2.html +++ b/docs/reference/generateComboNoNoiseData2.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateComboNoNoiseData3.html b/docs/reference/generateComboNoNoiseData3.html index 8382aedb..a007ad08 100644 --- a/docs/reference/generateComboNoNoiseData3.html +++ b/docs/reference/generateComboNoNoiseData3.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateLigandData.html b/docs/reference/generateLigandData.html index 5ba10c7f..848d562d 100644 --- a/docs/reference/generateLigandData.html +++ b/docs/reference/generateLigandData.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateMediumData.html b/docs/reference/generateMediumData.html index 7ce22c1b..369fea4e 100644 --- a/docs/reference/generateMediumData.html +++ b/docs/reference/generateMediumData.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateNoNoiseRawData.html b/docs/reference/generateNoNoiseRawData.html index b2b1f52f..513c0977 100644 --- a/docs/reference/generateNoNoiseRawData.html +++ b/docs/reference/generateNoNoiseRawData.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateNoiseRawData.html b/docs/reference/generateNoiseRawData.html index 62c0d655..0495e1d7 100644 --- a/docs/reference/generateNoiseRawData.html +++ b/docs/reference/generateNoiseRawData.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/generateTripleComboMatrix.html b/docs/reference/generateTripleComboMatrix.html index 995cb436..ad5f37df 100644 --- a/docs/reference/generateTripleComboMatrix.html +++ b/docs/reference/generateTripleComboMatrix.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_assays_per_pipeline_step.html b/docs/reference/get_assays_per_pipeline_step.html index 095131a5..7831db9f 100644 --- a/docs/reference/get_assays_per_pipeline_step.html +++ b/docs/reference/get_assays_per_pipeline_step.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_cell_line_annotation.html b/docs/reference/get_cell_line_annotation.html index 61c42600..8d63d72a 100644 --- a/docs/reference/get_cell_line_annotation.html +++ b/docs/reference/get_cell_line_annotation.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_cellline_annotation_from_dt.html b/docs/reference/get_cellline_annotation_from_dt.html index 4ad46010..23cee6e5 100644 --- a/docs/reference/get_cellline_annotation_from_dt.html +++ b/docs/reference/get_cellline_annotation_from_dt.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_default_nested_identifiers.html b/docs/reference/get_default_nested_identifiers.html index 55729fdc..adc66a1f 100644 --- a/docs/reference/get_default_nested_identifiers.html +++ b/docs/reference/get_default_nested_identifiers.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_drug_annotation.html b/docs/reference/get_drug_annotation.html index 220fe452..65da4a54 100644 --- a/docs/reference/get_drug_annotation.html +++ b/docs/reference/get_drug_annotation.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_drug_annotation_from_dt.html b/docs/reference/get_drug_annotation_from_dt.html index 6b465162..2c5801bb 100644 --- a/docs/reference/get_drug_annotation_from_dt.html +++ b/docs/reference/get_drug_annotation_from_dt.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_mae_from_intermediate_data.html b/docs/reference/get_mae_from_intermediate_data.html index 28051c27..4caf7bb2 100644 --- a/docs/reference/get_mae_from_intermediate_data.html +++ b/docs/reference/get_mae_from_intermediate_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_pipeline_steps.html b/docs/reference/get_pipeline_steps.html index b2a18283..5508ac2d 100644 --- a/docs/reference/get_pipeline_steps.html +++ b/docs/reference/get_pipeline_steps.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/get_relevant_ids.html b/docs/reference/get_relevant_ids.html index 14eb81e0..3c370431 100644 --- a/docs/reference/get_relevant_ids.html +++ b/docs/reference/get_relevant_ids.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/grr_matches.html b/docs/reference/grr_matches.html index 6df2129f..1e71e1a8 100644 --- a/docs/reference/grr_matches.html +++ b/docs/reference/grr_matches.html @@ -14,7 +14,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/identify_data_type.html b/docs/reference/identify_data_type.html index 70fd17a6..788ecf9d 100644 --- a/docs/reference/identify_data_type.html +++ b/docs/reference/identify_data_type.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/identify_keys.html b/docs/reference/identify_keys.html index 5561e54f..8114b022 100644 --- a/docs/reference/identify_keys.html +++ b/docs/reference/identify_keys.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/index.html b/docs/reference/index.html index 59fab773..4ac41073 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -157,11 +157,6 @@ Annotationget_drug_annotation_from_dt() Retrieve the drug annotation from the annotated dt input - - - remove_drug_batch() - - Remove batch from Gnumber Calculating GR diff --git a/docs/reference/is_preceding_step.html b/docs/reference/is_preceding_step.html index bbf82f24..c5f3717d 100644 --- a/docs/reference/is_preceding_step.html +++ b/docs/reference/is_preceding_step.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/map_conc_to_standardized_conc.html b/docs/reference/map_conc_to_standardized_conc.html index cadcb0aa..4e88471e 100644 --- a/docs/reference/map_conc_to_standardized_conc.html +++ b/docs/reference/map_conc_to_standardized_conc.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/map_df.html b/docs/reference/map_df.html index c435002a..05f151df 100644 --- a/docs/reference/map_df.html +++ b/docs/reference/map_df.html @@ -12,7 +12,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -141,7 +141,7 @@ Examples ref_cols = Keys[[ref_type]], ref_type = ref_type ) -#> INFO [2024-12-18 16:03:24] +#> INFO [2025-01-22 10:37:31] #> [[1]] #> NULL #> diff --git a/docs/reference/map_ids_to_fits.html b/docs/reference/map_ids_to_fits.html index 071c1199..6f83ac8d 100644 --- a/docs/reference/map_ids_to_fits.html +++ b/docs/reference/map_ids_to_fits.html @@ -12,7 +12,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/map_untreated.html b/docs/reference/map_untreated.html index 714101c7..83230add 100644 --- a/docs/reference/map_untreated.html +++ b/docs/reference/map_untreated.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/merge_data.html b/docs/reference/merge_data.html index 1bca2bbf..d5a7b952 100644 --- a/docs/reference/merge_data.html +++ b/docs/reference/merge_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -93,12 +93,12 @@ Examples df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) -#> INFO [2024-12-18 16:03:25] Manifest loaded successfully -#> INFO [2024-12-18 16:03:25] Reading Template_7daytreated.xlsx with load_templates_xlsx -#> INFO [2024-12-18 16:03:25] Loading Template_7daytreated.xlsx -#> INFO [2024-12-18 16:03:25] Loading Template_Untreated.xlsx -#> INFO [2024-12-18 16:03:25] Templates loaded successfully! -#> INFO [2024-12-18 16:03:25] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:31] Manifest loaded successfully +#> INFO [2025-01-22 10:37:31] Reading Template_7daytreated.xlsx with load_templates_xlsx +#> INFO [2025-01-22 10:37:31] Loading Template_7daytreated.xlsx +#> INFO [2025-01-22 10:37:31] Loading Template_Untreated.xlsx +#> INFO [2025-01-22 10:37:31] Templates loaded successfully! +#> INFO [2025-01-22 10:37:31] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -125,14 +125,14 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:25] Plate 201904190a read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904190b read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904190c read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904190d read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904190e read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904190f read; 384 wells -#> INFO [2024-12-18 16:03:25] File done -#> INFO [2024-12-18 16:03:25] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:32] Plate 201904190a read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904190b read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904190c read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904190d read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904190e read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904190f read; 384 wells +#> INFO [2025-01-22 10:37:32] File done +#> INFO [2025-01-22 10:37:32] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -159,21 +159,21 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:25] Plate 201904197a read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904197b read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904197c read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904197d read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904197e read; 384 wells -#> INFO [2024-12-18 16:03:25] Plate 201904197f read; 384 wells -#> INFO [2024-12-18 16:03:25] File done +#> INFO [2025-01-22 10:37:32] Plate 201904197a read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904197b read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904197c read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904197d read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904197e read; 384 wells +#> INFO [2025-01-22 10:37:32] Plate 201904197f read; 384 wells +#> INFO [2025-01-22 10:37:32] File done merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) -#> INFO [2024-12-18 16:03:25] Merging data -#> INFO [2024-12-18 16:03:25] Merging the metadata (manifest and treatment files) -#> WARN [2024-12-18 16:03:25] 4608 well loaded, 768 wells discarded for lack of annotation, +#> INFO [2025-01-22 10:37:32] Merging data +#> INFO [2025-01-22 10:37:32] Merging the metadata (manifest and treatment files) +#> WARN [2025-01-22 10:37:32] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> #> CellLineName Tissue Duration DrugName Concentration DrugName_2 diff --git a/docs/reference/order_result_df.html b/docs/reference/order_result_df.html index 7700cb3d..2c4bdc27 100644 --- a/docs/reference/order_result_df.html +++ b/docs/reference/order_result_df.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/prepare_input.MultiAssayExperiment.html b/docs/reference/prepare_input.MultiAssayExperiment.html index ba9e11c8..2468c6b7 100644 --- a/docs/reference/prepare_input.MultiAssayExperiment.html +++ b/docs/reference/prepare_input.MultiAssayExperiment.html @@ -20,7 +20,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/prepare_input.data.table.html b/docs/reference/prepare_input.data.table.html index a4d8429c..64966942 100644 --- a/docs/reference/prepare_input.data.table.html +++ b/docs/reference/prepare_input.data.table.html @@ -20,7 +20,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/prepare_input.html b/docs/reference/prepare_input.html index e13e7eb0..a04a310a 100644 --- a/docs/reference/prepare_input.html +++ b/docs/reference/prepare_input.html @@ -20,7 +20,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -101,12 +101,12 @@ Examples df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) -#> INFO [2024-12-18 16:03:27] Manifest loaded successfully -#> INFO [2024-12-18 16:03:27] Reading Template_7daytreated.xlsx with load_templates_xlsx -#> INFO [2024-12-18 16:03:27] Loading Template_7daytreated.xlsx -#> INFO [2024-12-18 16:03:27] Loading Template_Untreated.xlsx -#> INFO [2024-12-18 16:03:27] Templates loaded successfully! -#> INFO [2024-12-18 16:03:27] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:33] Manifest loaded successfully +#> INFO [2025-01-22 10:37:33] Reading Template_7daytreated.xlsx with load_templates_xlsx +#> INFO [2025-01-22 10:37:33] Loading Template_7daytreated.xlsx +#> INFO [2025-01-22 10:37:33] Loading Template_Untreated.xlsx +#> INFO [2025-01-22 10:37:33] Templates loaded successfully! +#> INFO [2025-01-22 10:37:33] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -133,14 +133,14 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:27] Plate 201904190a read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904190b read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904190c read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904190d read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904190e read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904190f read; 384 wells -#> INFO [2024-12-18 16:03:27] File done -#> INFO [2024-12-18 16:03:27] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:33] Plate 201904190a read; 384 wells +#> INFO [2025-01-22 10:37:33] Plate 201904190b read; 384 wells +#> INFO [2025-01-22 10:37:33] Plate 201904190c read; 384 wells +#> INFO [2025-01-22 10:37:33] Plate 201904190d read; 384 wells +#> INFO [2025-01-22 10:37:33] Plate 201904190e read; 384 wells +#> INFO [2025-01-22 10:37:33] Plate 201904190f read; 384 wells +#> INFO [2025-01-22 10:37:33] File done +#> INFO [2025-01-22 10:37:33] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -167,21 +167,21 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:27] Plate 201904197a read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904197b read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904197c read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904197d read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904197e read; 384 wells -#> INFO [2024-12-18 16:03:27] Plate 201904197f read; 384 wells -#> INFO [2024-12-18 16:03:27] File done +#> INFO [2025-01-22 10:37:34] Plate 201904197a read; 384 wells +#> INFO [2025-01-22 10:37:34] Plate 201904197b read; 384 wells +#> INFO [2025-01-22 10:37:34] Plate 201904197c read; 384 wells +#> INFO [2025-01-22 10:37:34] Plate 201904197d read; 384 wells +#> INFO [2025-01-22 10:37:34] Plate 201904197e read; 384 wells +#> INFO [2025-01-22 10:37:34] Plate 201904197f read; 384 wells +#> INFO [2025-01-22 10:37:34] File done df_ <- merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) -#> INFO [2024-12-18 16:03:27] Merging data -#> INFO [2024-12-18 16:03:27] Merging the metadata (manifest and treatment files) -#> WARN [2024-12-18 16:03:27] 4608 well loaded, 768 wells discarded for lack of annotation, +#> INFO [2025-01-22 10:37:34] Merging data +#> INFO [2025-01-22 10:37:34] Merging the metadata (manifest and treatment files) +#> WARN [2025-01-22 10:37:34] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> nested_confounders = intersect( diff --git a/docs/reference/process_perturbations.html b/docs/reference/process_perturbations.html index 26ce60c4..d072f245 100644 --- a/docs/reference/process_perturbations.html +++ b/docs/reference/process_perturbations.html @@ -18,7 +18,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/read_intermediate_data.html b/docs/reference/read_intermediate_data.html index ec33ae70..e18a78da 100644 --- a/docs/reference/read_intermediate_data.html +++ b/docs/reference/read_intermediate_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/remove_drug_batch.html b/docs/reference/remove_drug_batch.html deleted file mode 100644 index 7eecc7a5..00000000 --- a/docs/reference/remove_drug_batch.html +++ /dev/null @@ -1,106 +0,0 @@ - -Remove batch from Gnumber — remove_drug_batch • gDRcore - Skip to contents - - - - - gDRcore - - 1.5.3 - - - - - - - - - Get started - - - Reference - - - Articles - - gDR annotation - gDR -- data model - - - - Changelog - - - - - - - - - - - - - - - - - - Remove batch from Gnumber - Source: R/add_annotation.R - remove_drug_batch.Rd - - - - Remove batch from Gnumber - - - - Usage - remove_drug_batch(drug) - - - - Arguments - drug -drug name - - - - Value - - -Gnumber without a batch - - - - Examples - remove_drug_batch("DRUG.123") -#> [1] "DRUG" - - - - - - - - - - - - - - diff --git a/docs/reference/replace_conc_with_standardized_conc.html b/docs/reference/replace_conc_with_standardized_conc.html index 7f166948..701fec8d 100644 --- a/docs/reference/replace_conc_with_standardized_conc.html +++ b/docs/reference/replace_conc_with_standardized_conc.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/runDrugResponseProcessingPipelineFxns.html b/docs/reference/runDrugResponseProcessingPipelineFxns.html index d14c76b2..35712a02 100644 --- a/docs/reference/runDrugResponseProcessingPipelineFxns.html +++ b/docs/reference/runDrugResponseProcessingPipelineFxns.html @@ -16,7 +16,7 @@ gDRcore - 1.5.3 + 1.5.4 @@ -374,12 +374,12 @@ Examples df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) -#> INFO [2024-12-18 16:03:28] Manifest loaded successfully -#> INFO [2024-12-18 16:03:28] Reading Template_7daytreated.xlsx with load_templates_xlsx -#> INFO [2024-12-18 16:03:28] Loading Template_7daytreated.xlsx -#> INFO [2024-12-18 16:03:29] Loading Template_Untreated.xlsx -#> INFO [2024-12-18 16:03:29] Templates loaded successfully! -#> INFO [2024-12-18 16:03:29] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:35] Manifest loaded successfully +#> INFO [2025-01-22 10:37:35] Reading Template_7daytreated.xlsx with load_templates_xlsx +#> INFO [2025-01-22 10:37:35] Loading Template_7daytreated.xlsx +#> INFO [2025-01-22 10:37:35] Loading Template_Untreated.xlsx +#> INFO [2025-01-22 10:37:35] Templates loaded successfully! +#> INFO [2025-01-22 10:37:35] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -406,14 +406,14 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:29] Plate 201904190a read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904190b read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904190c read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904190d read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904190e read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904190f read; 384 wells -#> INFO [2024-12-18 16:03:29] File done -#> INFO [2024-12-18 16:03:29] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:35] Plate 201904190a read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904190b read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904190c read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904190d read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904190e read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904190f read; 384 wells +#> INFO [2025-01-22 10:37:35] File done +#> INFO [2025-01-22 10:37:35] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -440,21 +440,21 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:29] Plate 201904197a read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904197b read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904197c read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904197d read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904197e read; 384 wells -#> INFO [2024-12-18 16:03:29] Plate 201904197f read; 384 wells -#> INFO [2024-12-18 16:03:29] File done +#> INFO [2025-01-22 10:37:35] Plate 201904197a read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904197b read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904197c read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904197d read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904197e read; 384 wells +#> INFO [2025-01-22 10:37:35] Plate 201904197f read; 384 wells +#> INFO [2025-01-22 10:37:35] File done imported_data <- merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) -#> INFO [2024-12-18 16:03:29] Merging data -#> INFO [2024-12-18 16:03:29] Merging the metadata (manifest and treatment files) -#> WARN [2024-12-18 16:03:29] 4608 well loaded, 768 wells discarded for lack of annotation, +#> INFO [2025-01-22 10:37:35] Merging data +#> INFO [2025-01-22 10:37:35] Merging the metadata (manifest and treatment files) +#> WARN [2025-01-22 10:37:35] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> @@ -467,12 +467,12 @@ Examples df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) -#> INFO [2024-12-18 16:03:29] Manifest loaded successfully -#> INFO [2024-12-18 16:03:29] Reading Template_7daytreated.xlsx with load_templates_xlsx -#> INFO [2024-12-18 16:03:29] Loading Template_7daytreated.xlsx -#> INFO [2024-12-18 16:03:30] Loading Template_Untreated.xlsx -#> INFO [2024-12-18 16:03:30] Templates loaded successfully! -#> INFO [2024-12-18 16:03:30] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:36] Manifest loaded successfully +#> INFO [2025-01-22 10:37:36] Reading Template_7daytreated.xlsx with load_templates_xlsx +#> INFO [2025-01-22 10:37:36] Loading Template_7daytreated.xlsx +#> INFO [2025-01-22 10:37:36] Loading Template_Untreated.xlsx +#> INFO [2025-01-22 10:37:36] Templates loaded successfully! +#> INFO [2025-01-22 10:37:36] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -499,14 +499,14 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:30] Plate 201904190a read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904190b read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904190c read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904190d read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904190e read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904190f read; 384 wells -#> INFO [2024-12-18 16:03:30] File done -#> INFO [2024-12-18 16:03:30] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:37] Plate 201904190a read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904190b read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904190c read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904190d read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904190e read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904190f read; 384 wells +#> INFO [2025-01-22 10:37:37] File done +#> INFO [2025-01-22 10:37:37] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -533,21 +533,21 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:30] Plate 201904197a read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904197b read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904197c read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904197d read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904197e read; 384 wells -#> INFO [2024-12-18 16:03:30] Plate 201904197f read; 384 wells -#> INFO [2024-12-18 16:03:30] File done +#> INFO [2025-01-22 10:37:37] Plate 201904197a read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904197b read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904197c read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904197d read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904197e read; 384 wells +#> INFO [2025-01-22 10:37:37] Plate 201904197f read; 384 wells +#> INFO [2025-01-22 10:37:37] File done imported_data <- merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) -#> INFO [2024-12-18 16:03:30] Merging data -#> INFO [2024-12-18 16:03:30] Merging the metadata (manifest and treatment files) -#> WARN [2024-12-18 16:03:30] 4608 well loaded, 768 wells discarded for lack of annotation, +#> INFO [2025-01-22 10:37:37] Merging data +#> INFO [2025-01-22 10:37:37] Merging the metadata (manifest and treatment files) +#> WARN [2025-01-22 10:37:37] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> @@ -558,8 +558,8 @@ Examples inl$df_list[["single-agent"]], data_type = "single-agent", nested_confounders = inl$nested_confounders) -#> INFO [2024-12-18 16:03:30] -#> INFO [2024-12-18 16:03:30] +#> INFO [2025-01-22 10:37:37] +#> INFO [2025-01-22 10:37:37] normalize_SE(se, data_type = "single-agent") #> class: SummarizedExperiment @@ -582,12 +582,12 @@ Examples df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) -#> INFO [2024-12-18 16:03:31] Manifest loaded successfully -#> INFO [2024-12-18 16:03:31] Reading Template_7daytreated.xlsx with load_templates_xlsx -#> INFO [2024-12-18 16:03:31] Loading Template_7daytreated.xlsx -#> INFO [2024-12-18 16:03:31] Loading Template_Untreated.xlsx -#> INFO [2024-12-18 16:03:31] Templates loaded successfully! -#> INFO [2024-12-18 16:03:31] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:37] Manifest loaded successfully +#> INFO [2025-01-22 10:37:37] Reading Template_7daytreated.xlsx with load_templates_xlsx +#> INFO [2025-01-22 10:37:38] Loading Template_7daytreated.xlsx +#> INFO [2025-01-22 10:37:38] Loading Template_Untreated.xlsx +#> INFO [2025-01-22 10:37:38] Templates loaded successfully! +#> INFO [2025-01-22 10:37:38] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -614,14 +614,14 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:31] Plate 201904190a read; 384 wells -#> INFO [2024-12-18 16:03:31] Plate 201904190b read; 384 wells -#> INFO [2024-12-18 16:03:31] Plate 201904190c read; 384 wells -#> INFO [2024-12-18 16:03:31] Plate 201904190d read; 384 wells -#> INFO [2024-12-18 16:03:31] Plate 201904190e read; 384 wells -#> INFO [2024-12-18 16:03:31] Plate 201904190f read; 384 wells -#> INFO [2024-12-18 16:03:31] File done -#> INFO [2024-12-18 16:03:31] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 +#> INFO [2025-01-22 10:37:38] Plate 201904190a read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904190b read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904190c read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904190d read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904190e read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904190f read; 384 wells +#> INFO [2025-01-22 10:37:38] File done +#> INFO [2025-01-22 10:37:38] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` @@ -648,21 +648,21 @@ Examples#> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` -#> INFO [2024-12-18 16:03:32] Plate 201904197a read; 384 wells -#> INFO [2024-12-18 16:03:32] Plate 201904197b read; 384 wells -#> INFO [2024-12-18 16:03:32] Plate 201904197c read; 384 wells -#> INFO [2024-12-18 16:03:32] Plate 201904197d read; 384 wells -#> INFO [2024-12-18 16:03:32] Plate 201904197e read; 384 wells -#> INFO [2024-12-18 16:03:32] Plate 201904197f read; 384 wells -#> INFO [2024-12-18 16:03:32] File done +#> INFO [2025-01-22 10:37:38] Plate 201904197a read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904197b read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904197c read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904197d read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904197e read; 384 wells +#> INFO [2025-01-22 10:37:38] Plate 201904197f read; 384 wells +#> INFO [2025-01-22 10:37:38] File done imported_data <- merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) -#> INFO [2024-12-18 16:03:32] Merging data -#> INFO [2024-12-18 16:03:32] Merging the metadata (manifest and treatment files) -#> WARN [2024-12-18 16:03:32] 4608 well loaded, 768 wells discarded for lack of annotation, +#> INFO [2025-01-22 10:37:38] Merging data +#> INFO [2025-01-22 10:37:38] Merging the metadata (manifest and treatment files) +#> WARN [2025-01-22 10:37:38] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> runDrugResponseProcessingPipeline( diff --git a/docs/reference/save_intermediate_data.html b/docs/reference/save_intermediate_data.html index ed8da1a6..d571c05a 100644 --- a/docs/reference/save_intermediate_data.html +++ b/docs/reference/save_intermediate_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/split_raw_data.html b/docs/reference/split_raw_data.html index 3be8a95c..f8d015c4 100644 --- a/docs/reference/split_raw_data.html +++ b/docs/reference/split_raw_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/test_synthetic_data.html b/docs/reference/test_synthetic_data.html index ad953b07..afc3b33b 100644 --- a/docs/reference/test_synthetic_data.html +++ b/docs/reference/test_synthetic_data.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/reference/validate_data_models_availability.html b/docs/reference/validate_data_models_availability.html index 6e61af47..a15ab98c 100644 --- a/docs/reference/validate_data_models_availability.html +++ b/docs/reference/validate_data_models_availability.html @@ -10,7 +10,7 @@ gDRcore - 1.5.3 + 1.5.4 diff --git a/docs/search.json b/docs/search.json index fa4dc920..b4c9a96a 100644 --- a/docs/search.json +++ b/docs/search.json @@ -1 +1 @@ -[{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/PULL_REQUEST_TEMPLATE.html","id":"what-changed","dir":"","previous_headings":"","what":"What changed?","title":"Description","text":"Related JIRA issue:","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/PULL_REQUEST_TEMPLATE.html","id":"checklist-for-sustainable-code-base","dir":"","previous_headings":"","what":"Checklist for sustainable code base","title":"Description","text":"added tests code changed/added added documentation code changed/added made sure naming new functions self-explanatory consistent","code":""},{"path":"https://gdrplatform.github.io/gDRcore/PULL_REQUEST_TEMPLATE.html","id":"logistic-checklist","dir":"","previous_headings":"","what":"Logistic checklist","title":"Description","text":"Package version bumped Changelog updated","code":""},{"path":[]},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"introduction","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Introduction","title":"gDR annotation","text":"running gDR pipeline, essential annotate data properly drug cell line information. document outlines process data annotation requirements annotation files.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"annotation-files","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Annotation Files","title":"gDR annotation","text":"gDR uses two sources annotation: drug annotation cell line annotation. annotations added data table running pipeline. scripts adding data annotation located R/add_annotation.R, contains four primary functions: annotate_dt_with_cell_line annotate_dt_with_drug annotating data functions get_cell_line_annotation get_drug_annotation receiving default annotation data. recommended run cleanup_metadata function, adds annotations performs data cleaning.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"annotation-file-locations","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline > Annotation Files","what":"Annotation File Locations","title":"gDR annotation","text":"drug cell line annotation files stored gDRtestData/inst/annotation_data. two files: cell_lines.csv drugs.csv Users can edit files add annotations. updating, required reinstall gDRtestData use new annotations. Alternatively, users can use annotation files stored outside package. purpose, necessary set two environmental variables: GDR_CELLLINE_ANNOTATION: Represents path cell line annotation CSV file. GDR_DRUG_ANNOTATION: Represents path drug annotation CSV file. NOTE: gDR annotation can sourced different locations. Setting environmental variables paths annotation highest priority used first source annotation, even sources available. clarify, environmental variables internal annotation databases set, gDR prioritize environmental variables annotation. turn usage external paths data annotation, please set two environmental variables empty.","code":"Sys.setenv(GDR_CELLLINE_ANNOTATION = \"some/path/to/cell_line_annotation.csv\") Sys.setenv(GDR_DRUG_ANNOTATION = \"some/path/to/drug_annotation.csv\") Sys.setenv(GDR_CELLLINE_ANNOTATION = \"\") Sys.setenv(GDR_DRUG_ANNOTATION = \"\")"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"annotation-requirements","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Annotation Requirements","title":"gDR annotation","text":"gDR specific requirements annotation files properly annotate data.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"drug-annotation-requirements","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline > Annotation Requirements","what":"Drug Annotation Requirements","title":"gDR annotation","text":"obligatory fields drug annotation : Gnumber: Represents ID drug. DrugName: Represents name drug. drug_moa: Represents drug mechanism action.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"cell-line-annotation-requirements","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline > Annotation Requirements","what":"Cell Line Annotation Requirements","title":"gDR annotation","text":"obligatory fields cell line annotation : clid: Represents cell line ID. CellLineName: Represents name cell line. Tissue: Represents primary tissue cell line. ReferenceDivisionTime: Represents doubling time cell line hours. parental_identifier: Represents name parental cell line. subtype: Represents subtype cell line. information known cell line drug, corresponding field left empty NA. Nonetheless, since fill parameter consistently specified annotation function, default value ‘unknown’ can altered user.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"creating-a-data-table-with-annotation","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Creating a Data Table with Annotation","title":"gDR annotation","text":"illustrate, ’s example create data.table required fields drug cell line annotation:","code":"# Example of creating a data.table with required fields for drug annotation drug_annotation <- data.table( Gnumber = c(\"G1\", \"G2\", \"G3\"), DrugName = c(\"Drug A\", \"Drug B\", \"Drug C\"), drug_moa = c(\"MOA A\", \"MOA B\", \"MOA C\") ) # Example of creating a data.table with required fields for cell line annotation cell_line_annotation <- data.table( clid = c(\"Cell_Line_1\", \"Cell_Line_2\", \"Cell_Line_3\"), CellLineName = c(\"Cell Line 1\", \"Cell Line 2\", \"Cell Line 3\"), Tissue = c(\"Tissue A\", \"Tissue B\", \"Tissue C\"), ReferenceDivisionTime = c(24, 30, 28), parental_identifier = c(\"Parental 1\", \"Parental 2\", \"Parental 3\"), subtype = NA )"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"additional-information-for-genentechroche-users","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Additional Information for Genentech/Roche Users","title":"gDR annotation","text":"users within Genentech/Roche, recommend utilizing internal annotation databases. provide gDRinternal package specifically internal users, includes functions managing internal annotation data. internal user, can install gDRinternal package, gDRcore automatically utilize package source data annotation.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"conclusion","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Conclusion","title":"gDR annotation","text":"Proper annotation drug cell line data crucial running gDR pipeline effectively. adhering annotation requirements following outlined process, users can ensure accurate reliable results pipeline.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"sessioninfo","dir":"Articles","previous_headings":"","what":"SessionInfo","title":"gDR annotation","text":"","code":"sessionInfo() #> R version 4.3.0 (2023-04-21) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.3 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C #> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 #> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 #> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C #> [9] LC_ADDRESS=C LC_TELEPHONE=C #> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C #> #> time zone: Etc/UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] BiocStyle_2.30.0 #> #> loaded via a namespace (and not attached): #> [1] vctrs_0.6.5 cli_3.6.3 knitr_1.45 #> [4] rlang_1.1.4 xfun_0.42 stringi_1.8.4 #> [7] purrr_1.0.2 textshaping_0.3.7 jsonlite_1.8.9 #> [10] glue_1.8.0 htmltools_0.5.7 ragg_1.2.7 #> [13] sass_0.4.8 rmarkdown_2.25 evaluate_0.23 #> [16] jquerylib_0.1.4 fastmap_1.1.1 yaml_2.3.8 #> [19] lifecycle_1.0.4 memoise_2.0.1 bookdown_0.37 #> [22] BiocManager_1.30.22 stringr_1.5.1 compiler_4.3.0 #> [25] fs_1.6.3 systemfonts_1.0.5 digest_0.6.34 #> [28] R6_2.5.1 magrittr_2.0.3 bslib_0.6.1 #> [31] tools_4.3.0 pkgdown_2.0.7 cachem_1.0.8 #> [34] desc_1.4.3"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"gDR -- data model","text":"vignette dedicated providing -depth exploration underlying data model employed gDR suite, focus versatile MultiAssayExperiment object – cornerstone gDR ecosystem. vignette delves intricacies data model, shedding light different components organized within MultiAssayExperiment object. basic essential object gDR, MultiAssayExperiment encapsulates diverse dimensions drug response data, providing unified coherent framework analysis. primary goal equip users detailed understanding gDRsuite data model utilization within MultiAssayExperiment object. practical examples thorough explanations, aim demonstrate gDRcore’s core functions pipeline facilitate efficient analysis, providing valuable insights drug response dynamics. information data processing can found gDRcore.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"general-overview-of-the-data-model","dir":"Articles","previous_headings":"","what":"General overview of the data model","title":"gDR -- data model","text":"gDR suite, culmination drug response data encapsulated form MultiAssayExperiment object, representing versatile cohesive framework analysis diverse experimental scenarios.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"supported-experiments","dir":"Articles","previous_headings":"General overview of the data model","what":"Supported Experiments:","title":"gDR -- data model","text":"gDR suite accommodates three primary types experiments within MultiAssayExperiment object: single-agent experiment: involves assessment drug responses single agent, providing insights individual treatment effects. combination experiments: explores interactions multiple agents, unraveling complexities combined drug treatments effects. co-dilution experiments: Focused studying effects diluting concentrations compounds, codilution experiments provide valuable data concentration-dependent aspects drug responses.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"summarizedexperiment-objects","dir":"Articles","previous_headings":"General overview of the data model","what":"SummarizedExperiment objects:","title":"gDR -- data model","text":"experiment within MultiAssayExperiment represented SummarizedExperiment object. encapsulates essential components necessary comprehensive analysis: assays: Containing actual data, assays provide numerical representation drug responses associated experimental measurements. gDR, assays represented BumpyMatrix object. rowData: Encompassing information related features, rowData provides context entities analyzed, drugs, compounds, concentrations. gDR, rowData represented DataFrame object S4Vectors colData: Describing experimental conditions, colData captures metadata associated cell lines, including tissues, reference division time, relevant covariates. gDR, colData represented DataFrame object S4Vectors metadata: Offering additional information experiment, metadata provides contextual layer enhance understanding experimental setup.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"multiassayexperiment-object","dir":"Articles","previous_headings":"","what":"MultiAssayExperiment object","title":"gDR -- data model","text":"core, MultiAssayExperiment object designed hold collection SummarizedExperiment objects, representing distinct experiment type within gDR suite. simplicity ensures clean efficient organization data, facilitating user-friendly experience. extract specific experiments MultiAssayExperiment object, [[ operator can used example, access data related combination experiments, one can use MAE[[\"combination\"]], MAE represents MultiAssayExperiment object. gain insights available experiments within MultiAssayExperiment object, MultiAssayExperiment::experiments function can used.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"summarizedexperiment-object","dir":"Articles","previous_headings":"","what":"SummarizedExperiment object","title":"gDR -- data model","text":"SummarizedExperiment object emerges pivotal structure, integrating drug response data essential metadata. versatile container plays central role storage information related drugs, cell lines, experimental conditions, providing comprehensive foundation nuanced analysis within gDR. SummarizedExperiment object gDR contains four essential components:","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"assays","dir":"Articles","previous_headings":"SummarizedExperiment object","what":"Assays","title":"gDR -- data model","text":"section encapsulates drug response data , offering numerical representation experimental measurements. Whether involves single-agent studies, combination treatments, co-dilution experiments, assays contain crucial data points analysis. list available assays given gDR experiment can obtained using SummarizedExperiment::assayNames SummarizedExperiment object. extraction specific assay can done using SummarizedExperiment::assay function, .e. SummarizedExperiment::assay(se, \"Normalized\"), se SummarizedExperiment object, Normalized name assay within experiment. gDR experiments contain two sets assays. One set single-agent co-dilution experiments (five basic assays), another set combinations experiments (five basic assays plus four – combination-specific). List assays (combination-specific assays marked asterisk): RawTreated – stores treated references Controls – represents untreated, control references Normalized – represents normalized data compute RelativeViability GRValues (default gDR normalization types) Averaged – stores averaged replicates computed mean standard deviation Metrics – contains fitted response curves excess (*) – excess data pair concentration values (represents Bliss excess, HSA excess, data smoothing values) all_iso_points (*) stores isobologram points isobolograms (*) – stores isobologram curves scores (*) – scores data pair concentration values (HSA score, Bliss Score, CI (combination index) scores) assays stored BumpyMatrix objects. Assays represented numbers 3-9 additionally contain information normalization_type distinguish different metrics calculated normalization type (RelativeViability GRValues default). gDR BumpyMatrix objects can easily transformed data.table object using gDRutils::convert_se_assay_to_dt function. function also includes information rowData colData.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"rowdata","dir":"Articles","previous_headings":"SummarizedExperiment object","what":"rowData","title":"gDR -- data model","text":"rowData provides context features analyzed, rowData dedicated information drugs, compounds, concentrations annotations database. Additional perturbations replicates might also stored rowData. rowData can extracted SummarizedExperiment object using SummarizedExperiment::rowData function.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"coldata","dir":"Articles","previous_headings":"SummarizedExperiment object","what":"colData","title":"gDR -- data model","text":"colData represents experimental cell lines. includes details cell lines annotations. colData can extracted SummarizedExperiment object using SummarizedExperiment::colData function.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"metadata","dir":"Articles","previous_headings":"SummarizedExperiment object","what":"metadata","title":"gDR -- data model","text":"metadata offers extra layer information experiment , metadata provides context enhance comprehension. may include details experimental design, sources data, relevant information aids interpretation results. metadata information can extracted using S4Vectors::metadata function. gDR object metadata information stored list.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"gDR -- data model","text":"","code":"## R version 4.3.0 (2023-04-21) ## Platform: x86_64-pc-linux-gnu (64-bit) ## Running under: Ubuntu 22.04.3 LTS ## ## Matrix products: default ## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 ## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 ## ## locale: ## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C ## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 ## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 ## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C ## [9] LC_ADDRESS=C LC_TELEPHONE=C ## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C ## ## time zone: Etc/UTC ## tzcode source: system (glibc) ## ## attached base packages: ## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages: ## [1] BiocStyle_2.30.0 ## ## loaded via a namespace (and not attached): ## [1] vctrs_0.6.5 cli_3.6.3 knitr_1.45 ## [4] rlang_1.1.4 xfun_0.42 stringi_1.8.4 ## [7] purrr_1.0.2 textshaping_0.3.7 jsonlite_1.8.9 ## [10] glue_1.8.0 htmltools_0.5.7 ragg_1.2.7 ## [13] sass_0.4.8 rmarkdown_2.25 evaluate_0.23 ## [16] jquerylib_0.1.4 fastmap_1.1.1 yaml_2.3.8 ## [19] lifecycle_1.0.4 memoise_2.0.1 bookdown_0.37 ## [22] BiocManager_1.30.22 stringr_1.5.1 compiler_4.3.0 ## [25] fs_1.6.3 systemfonts_1.0.5 digest_0.6.34 ## [28] R6_2.5.1 magrittr_2.0.3 bslib_0.6.1 ## [31] tools_4.3.0 pkgdown_2.0.7 cachem_1.0.8 ## [34] desc_1.4.3"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"overview","dir":"Articles","previous_headings":"","what":"Overview","title":"gDRcore","text":"gDRcore part gDR suite. package provides set tools proces analyze drug response data.","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"data-model","dir":"Articles","previous_headings":"Introduction","what":"Data model","title":"gDRcore","text":"data model built MultiAssayExperiments (MAE) structure. Within MAE, SummarizedExperiment (SE) contains different unit type (e.g. single-agent, combination treatment). Columns MAE defined cell lines modification shared SEs. Rows defined treatments (e.g drugs, perturbations) specific SE. Assays SE different levels data processing (raw, control, normalized, averaged data, well metrics). nested element assays SEs comprises series table (data.table practice). Although elements need series number elements, attributes (columns table) consistent across SE.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"drug-processing","dir":"Articles","previous_headings":"Introduction","what":"Drug processing","title":"gDRcore","text":"drug response data, input files need merged measurement (data) associated right metadata (cell line properties treatment definition). Metadata can added function cleanup_metadata right reference databases place. data metadata merged long table, wrapper function runDrugResponseProcessingPipeline can used generate MAE processed analyzed data. . practice runDrugResponseProcessingPipeline following steps: create_SE creates structure MAE associated SEs assigning metadata row column attributes. assignment performed function split_SE_components (see details assumption made building SE structures). create_SE also dispatches raw data controls right nested tables. Note data may duplicated different SEs make self-contained. normalize_SE normalizes raw data based control. Calculation GR value based cell line division time provided reference database pre-treatment control provided. information missing, GR values calculated. Additional normalization can added new rows nested table. average_SE averages technical replicates stored nested table averaged. fit_SE fits dose-response curves calculates response metrics normalization type. fit_SE.combinations calculates synergy scores drug combination data , data appropriate, fits along two drugs matrix-level metrics (e.g. isobolograms) calculated. also performed normalization type independently. . functions process data parameters specifying names variables assays. Additional parameters available personalize processing steps force nesting () attribute, specify attributes considered technical replicates .","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"data-preprocessing","dir":"Articles","previous_headings":"Use Cases","what":"Data preprocessing","title":"gDRcore","text":"Please familiarize gDRimport package containing bunch tools allowing prepare input data gDRcore. example made based artificial dataset called data1 available within gDRimport package. gDR required three types data used raw input: Template, Manifest, RawData. info three types data find general documentation. Provided dataset needs merged one data.table object able run gDR pipeline. process can done using two functions – gDRimport::load_data() gDRcore::merge_data().","code":"td <- gDRimport::get_test_data() #> Error in get(paste0(generic, \".\", class), envir = get_method_env()) : #> object 'type_sum.accel' not found"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"running-gdr-pipeline","dir":"Articles","previous_headings":"Use Cases","what":"Running gDR pipeline","title":"gDRcore","text":"provide --one function splits data appropriate data types, creates SummarizedExperiment object data type, splits data treatment control assays, normalizes, averages, calculates gDR metrics, finally, creates MultiAssayExperiment object. function called runDrugResponseProcessingPipeline. can subset MultiAssayExperiment receive SummarizedExperiment specific data type, e.g.","code":"mae <- runDrugResponseProcessingPipeline(input_df) mae #> A MultiAssayExperiment object of 2 listed #> experiments with user-defined names and respective classes. #> Containing an ExperimentList class object of length 2: #> [1] combination: SummarizedExperiment with 2 rows and 6 columns #> [2] single-agent: SummarizedExperiment with 3 rows and 6 columns #> Functionality: #> experiments() - obtain the ExperimentList instance #> colData() - the primary/phenotype DataFrame #> sampleMap() - the sample coordination DataFrame #> `$`, `[`, `[[` - extract colData columns, subset, or experiment #> *Format() - convert into a long or wide DataFrame #> assays() - convert ExperimentList to a SimpleList of matrices #> exportClass() - save data to flat files mae[[\"single-agent\"]] #> class: SummarizedExperiment #> dim: 3 6 #> metadata(5): identifiers experiment_metadata Keys fit_parameters #> .internal #> assays(5): RawTreated Controls Normalized Averaged Metrics #> rownames(3): G00002_drug_002_moa_A_168 G00004_drug_004_moa_A_168 #> G00011_drug_011_moa_B_168 #> rowData names(4): Gnumber DrugName drug_moa Duration #> colnames(6): CL00011_cellline_BA_breast_cellline_BA_unknown_26 #> CL00012_cellline_CA_breast_cellline_CA_unknown_30 ... #> CL00015_cellline_FA_breast_cellline_FA_unknown_42 #> CL00018_cellline_IB_breast_cellline_IB_unknown_54 #> colData names(6): clid CellLineName ... subtype ReferenceDivisionTime"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"data-extraction","dir":"Articles","previous_headings":"Use Cases","what":"Data extraction","title":"gDRcore","text":"Extraction data either MultiAssayExperiment SummarizedExperiment objects user-friendly structures well data transformations can done using gDRutils. encourage read gDRutils vignette familiarize functionalities.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"sessioninfo","dir":"Articles","previous_headings":"","what":"SessionInfo","title":"gDRcore","text":"","code":"sessionInfo() #> R version 4.3.0 (2023-04-21) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.3 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C #> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 #> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 #> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C #> [9] LC_ADDRESS=C LC_TELEPHONE=C #> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C #> #> time zone: Etc/UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] gDRcore_1.5.3 gDRtestData_1.5.1 BiocStyle_2.30.0 #> #> loaded via a namespace (and not attached): #> [1] bitops_1.0-9 fastmap_1.1.1 #> [3] RCurl_1.98-1.16 BumpyMatrix_1.10.0 #> [5] TH.data_1.1-2 digest_0.6.34 #> [7] lifecycle_1.0.4 gDRutils_1.5.5 #> [9] survival_3.5-5 magrittr_2.0.3 #> [11] compiler_4.3.0 rlang_1.1.4 #> [13] sass_0.4.8 drc_3.0-1 #> [15] tools_4.3.0 plotrix_3.8-4 #> [17] yaml_2.3.8 data.table_1.16.4 #> [19] knitr_1.45 lambda.r_1.2.4 #> [21] S4Arrays_1.2.1 DelayedArray_0.28.0 #> [23] abind_1.4-8 multcomp_1.4-26 #> [25] BiocParallel_1.36.0 purrr_1.0.2 #> [27] BiocGenerics_0.48.1 desc_1.4.3 #> [29] grid_4.3.0 stats4_4.3.0 #> [31] colorspace_2.1-1 scales_1.3.0 #> [33] MASS_7.3-58.4 gtools_3.9.5 #> [35] MultiAssayExperiment_1.28.0 SummarizedExperiment_1.32.0 #> [37] cli_3.6.3 mvtnorm_1.3-2 #> [39] rmarkdown_2.25 crayon_1.5.3 #> [41] ragg_1.2.7 readxl_1.4.3 #> [43] cachem_1.0.8 stringr_1.5.1 #> [45] splines_4.3.0 zlibbioc_1.48.2 #> [47] gDRimport_1.5.4 assertthat_0.2.1 #> [49] parallel_4.3.0 formatR_1.14 #> [51] BiocManager_1.30.22 cellranger_1.1.0 #> [53] XVector_0.42.0 matrixStats_1.4.1 #> [55] vctrs_0.6.5 Matrix_1.6-5 #> [57] sandwich_3.1-1 jsonlite_1.8.9 #> [59] carData_3.0-5 bookdown_0.37 #> [61] car_3.1-3 IRanges_2.36.0 #> [63] S4Vectors_0.40.2 Formula_1.2-5 #> [65] systemfonts_1.0.5 testthat_3.2.1 #> [67] jquerylib_0.1.4 rematch_2.0.0 #> [69] glue_1.8.0 pkgdown_2.0.7 #> [71] codetools_0.2-19 stringi_1.8.4 #> [73] futile.logger_1.4.3 GenomeInfoDb_1.38.8 #> [75] GenomicRanges_1.54.1 munsell_0.5.1 #> [77] tibble_3.2.1 pillar_1.10.0 #> [79] htmltools_0.5.7 brio_1.1.4 #> [81] GenomeInfoDbData_1.2.11 R6_2.5.1 #> [83] textshaping_0.3.7 evaluate_0.23 #> [85] lattice_0.21-8 Biobase_2.62.0 #> [87] futile.options_1.0.1 backports_1.5.0 #> [89] memoise_2.0.1 bslib_0.6.1 #> [91] SparseArray_1.2.4 checkmate_2.3.2 #> [93] xfun_0.42 fs_1.6.3 #> [95] MatrixGenerics_1.14.0 zoo_1.8-12 #> [97] pkgconfig_2.0.3"},{"path":"https://gdrplatform.github.io/gDRcore/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Bartosz Czech. Author. Arkadiusz Gladki. Maintainer, author. Marc Hafner. Author. Pawel Piatkowski. Author. Natalia Potocka. Author. Dariusz Scigocki. Author. Janina Smola. Author. Sergiu Mocanu. Author. Marcin Kamianowski. Author. Allison Vuong. Author.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Czech B, Gladki , Hafner M, Piatkowski P, Potocka N, Scigocki D, Smola J, Mocanu S, Kamianowski M, Vuong (2024). gDRcore: Processing functions interface process analyze drug dose-response data. https://github.com/gdrplatform/gDRcore, https://gdrplatform.github.io/gDRcore/.","code":"@Manual{, title = {gDRcore: Processing functions and interface to process and analyze drug dose-response data}, author = {Bartosz Czech and Arkadiusz Gladki and Marc Hafner and Pawel Piatkowski and Natalia Potocka and Dariusz Scigocki and Janina Smola and Sergiu Mocanu and Marcin Kamianowski and Allison Vuong}, year = {2024}, note = {https://github.com/gdrplatform/gDRcore, https://gdrplatform.github.io/gDRcore/}, }"},{"path":"https://gdrplatform.github.io/gDRcore/index.html","id":"gdrcore","dir":"","previous_headings":"","what":"Processing functions and interface to process and analyze drug\n dose-response data","title":"Processing functions and interface to process and analyze drug\n dose-response data","text":"Processing drug response data involves merging metadata raw data long DataFrame. followed normalization, averaging, fitting ultimately results drug response fitting metrics.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/index.html","id":"website","dir":"","previous_headings":"","what":"Website","title":"Processing functions and interface to process and analyze drug\n dose-response data","text":"package website available link.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/add_intermediate_data.html","id":null,"dir":"Reference","previous_headings":"","what":"add intermediate data (qs files) for given ma — add_intermediate_data","title":"add intermediate data (qs files) for given ma — add_intermediate_data","text":"add intermediate data (qs files) given ma","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/add_intermediate_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"add intermediate data (qs files) for given ma — add_intermediate_data","text":"","code":"add_intermediate_data(mae, data_dir, steps = get_pipeline_steps())"},{"path":"https://gdrplatform.github.io/gDRcore/reference/add_intermediate_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"add intermediate data (qs files) for given ma — add_intermediate_data","text":"mae mae dose-response data data_dir output directory steps character vector pipeline steps intermediate data saved","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/add_intermediate_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"add intermediate data (qs files) for given ma — add_intermediate_data","text":"NULL","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":null,"dir":"Reference","previous_headings":"","what":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"Annotate cell line data provided annotation table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"","code":"annotate_dt_with_cell_line(data, cell_line_annotation, fill = \"unknown\")"},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"data data.table dose-response data cell_line_annotation data.table cell line annotations fill string indicating unknown cell lines filled DB","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"data.table annotated cell lines","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"","code":"data <- data.table::data.table( clid = c(\"CL1\", \"CL2\", \"CL3\"), Gnumber = c(\"D1\", \"D2\", \"D3\") ) cell_line_annotation <- get_cell_line_annotation(data) annotated_metadata <- annotate_dt_with_cell_line(data, cell_line_annotation)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":null,"dir":"Reference","previous_headings":"","what":"annotate_dt_with_drug — annotate_dt_with_drug","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"Annotate drug data provided annotation table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"","code":"annotate_dt_with_drug(data, drug_annotation, fill = \"unknown\")"},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"data data.table dose-response data drug_annotation data.table drug annotations fill string indicating unknown drugs filled DB","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"data.table annotated drugs","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"","code":"data <- data.table::data.table( clid = c(\"CL1\", \"CL2\", \"CL3\"), Gnumber = c(\"D1\", \"D2\", \"D3\") ) drug_annotation <- get_drug_annotation(data) annotated_metadata <- annotate_dt_with_drug(data, drug_annotation)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate a GR value. — calculate_GR_value","title":"Calculate a GR value. — calculate_GR_value","text":"Calculate GR value given set dose response values.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate a GR value. — calculate_GR_value","text":"","code":"calculate_GR_value( rel_viability, corrected_readout, day0_readout, untrt_readout, ndigit_rounding, duration, ref_div_time, cap = 1.25 ) calculate_time_dep_GR_value( corrected_readout, day0_readout, untrt_readout, ndigit_rounding ) calculate_endpt_GR_value( rel_viability, duration, ref_div_time, cap = 1.25, ndigit_rounding )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate a GR value. — calculate_GR_value","text":"rel_viability numeric vector representing Relative Viability. corrected_readout numeric vector containing corrected readout. day0_readout numeric vector containing day 0 readout. untrt_readout numeric vector containing untreated readout. ndigit_rounding integer specifying number digits use calculation rounding. duration numeric value specifying length time cells treated (hours). ref_div_time numeric value specifying reference division time cell line experiment. cap numeric value representing value cap highest allowed relative viability .","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate a GR value. — calculate_GR_value","text":"numeric vector containing GR values, one value element input vectors.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Calculate a GR value. — calculate_GR_value","text":"Note function expects numeric vectors length. calculate_GR_value try greedily calculate GR value. day 0 readouts available, duration ref_div_time used try back-calculate day 0 value order produce GR value. case calculating reference GR value multiple reference readout values, vectorized calculation performed resulting vector averaged outside function. Note expected ref_div_time duration reported units.","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate a GR value. — calculate_GR_value","text":"","code":"duration <- 144 rv <- seq(0.1, 1, 0.1) corrected <- seq(41000, 50000, 1000) day0 <- seq(91000, 95500, 500) untrt <- rep(c(115000, 118000), 5) calculate_GR_value( rel_viability = rv, corrected_readout = corrected, day0_readout = day0, untrt_readout = untrt, ndigit_rounding = 4, duration = duration, ref_div_time = duration / 2 ) #> [1] -0.9057 -0.8802 -0.9058 -0.8794 -0.9065 -0.8791 -0.9077 -0.8793 -0.9095 #> [10] -0.8800 readouts <- rep(10000, 5) calculate_time_dep_GR_value(readouts, readouts * 1.32, readouts * 2, 2) #> [1] -0.37 -0.37 -0.37 -0.37 -0.37 readouts <- rep(10000, 5) calculate_endpt_GR_value(readouts, 72, 1, ndigit_rounding = 2) #> [1] 1.01 1.01 1.01 1.01 1.01"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate the difference between values in two data.tables — calculate_excess","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"Calculate difference values, likely representing metric, two data.tables.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"","code":"calculate_excess( metric, measured, series_identifiers, metric_col, measured_col )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"metric data.table often representing readouts derived calculating metric. Examples include hsa bliss calculations single-agent data. measured data.table often representing measured data experiment. series_identifiers character vector identifiers measured metric define unique data point. metric_col string column metric use excess calculation. measured_col string column measured use excess calculation.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"data.table measured, now additional column named excess (positive values synergy/benefit).","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"","code":"metric <- data.table::data.table( Concentration = c(1, 2, 3, 1, 2, 3), Concentration_2 = c(1, 1, 1, 2, 2, 2), GRvalue = c(100, 200, 300, 400, 500, 600) ) measured <- data.table::data.table( Concentration = c(3, 1, 2, 2, 1, 3), Concentration_2 = c(1, 1, 1, 2, 2, 2), testvalue = c(200, 0, 100, 400, 300, 500) ) series_identifiers <- c(\"Concentration\", \"Concentration_2\") metric_col <- \"GRvalue\" measured_col <- \"testvalue\" calculate_excess( metric, measured, series_identifiers, metric_col, measured_col ) #> Concentration Concentration_2 x #> #> 1: 3 1 100 #> 2: 1 1 100 #> 3: 2 1 100 #> 4: 2 2 100 #> 5: 1 2 100 #> 6: 3 2 100"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_matrix_metric.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate a metric for combination data. — calculate_matrix_metric","title":"Calculate a metric for combination data. — calculate_matrix_metric","text":"Calculate metric based single-agent values combination screens.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_matrix_metric.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate a metric for combination data. — calculate_matrix_metric","text":"","code":"calculate_HSA(sa1, series_id1, sa2, series_id2, metric) calculate_Bliss( sa1, series_id1, sa2, series_id2, metric, measured_col = \"smooth\" ) .calculate_matrix_metric( sa1, series_id1, sa2, series_id2, metric, FXN, measured_col = \"x\" )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_matrix_metric.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate a metric for combination data. — calculate_matrix_metric","text":"sa1 data.table containing single agent data entries series_id2 0. Columns data.table include identifiers metric interest. Metric stored 'x' column. series_id1 String representing column within sa1 represents id1. sa2 data.table containing single agent data entries series_id1 0. Columns data.table include identifiers metric interest.n Metric stored 'x' column. series_id2 String representing column within sa2 represents id2. metric String specifying metric interest. Usually either 'GRvalue' 'RelativeViability'. measured_col String specyfying measured colname. FXN Function apply single-agent fits calculate metric.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_matrix_metric.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate a metric for combination data. — calculate_matrix_metric","text":"data.table containing single row every unique combination two series identifiers corresponding calculated metric row.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_matrix_metric.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Calculate a metric for combination data. — calculate_matrix_metric","text":"calculate_HSA takes minimum two single agents readouts. calculate_Bliss performs Bliss additivity calculation based single agent effects, defined 1-x corresponding normalization. See https://www.sciencedirect.com/science/article/pii/S1359644619303460?via%3Dihub#tb0005 details.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_matrix_metric.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate a metric for combination data. — calculate_matrix_metric","text":"","code":"n <- 10 sa1 <- data.table::data.table(conc = seq(n), conc2 = rep(0, n), smooth = seq(n)) sa2 <- data.table::data.table(conc = rep(0, n), conc2 = seq(n), smooth = seq(n)) calculate_HSA(sa1, \"conc\", sa2, \"conc2\", \"smooth\") #> conc conc2 metric1 metric2 metric #> #> 1: 1 1 1 1 1 #> 2: 2 1 2 1 1 #> 3: 3 1 3 1 1 #> 4: 4 1 4 1 1 #> 5: 5 1 5 1 1 #> 6: 6 1 6 1 1 #> 7: 7 1 7 1 1 #> 8: 8 1 8 1 1 #> 9: 9 1 9 1 1 #> 10: 10 1 10 1 1 #> 11: 1 2 1 2 1 #> 12: 2 2 2 2 2 #> 13: 3 2 3 2 2 #> 14: 4 2 4 2 2 #> 15: 5 2 5 2 2 #> 16: 6 2 6 2 2 #> 17: 7 2 7 2 2 #> 18: 8 2 8 2 2 #> 19: 9 2 9 2 2 #> 20: 10 2 10 2 2 #> 21: 1 3 1 3 1 #> 22: 2 3 2 3 2 #> 23: 3 3 3 3 3 #> 24: 4 3 4 3 3 #> 25: 5 3 5 3 3 #> 26: 6 3 6 3 3 #> 27: 7 3 7 3 3 #> 28: 8 3 8 3 3 #> 29: 9 3 9 3 3 #> 30: 10 3 10 3 3 #> 31: 1 4 1 4 1 #> 32: 2 4 2 4 2 #> 33: 3 4 3 4 3 #> 34: 4 4 4 4 4 #> 35: 5 4 5 4 4 #> 36: 6 4 6 4 4 #> 37: 7 4 7 4 4 #> 38: 8 4 8 4 4 #> 39: 9 4 9 4 4 #> 40: 10 4 10 4 4 #> 41: 1 5 1 5 1 #> 42: 2 5 2 5 2 #> 43: 3 5 3 5 3 #> 44: 4 5 4 5 4 #> 45: 5 5 5 5 5 #> 46: 6 5 6 5 5 #> 47: 7 5 7 5 5 #> 48: 8 5 8 5 5 #> 49: 9 5 9 5 5 #> 50: 10 5 10 5 5 #> 51: 1 6 1 6 1 #> 52: 2 6 2 6 2 #> 53: 3 6 3 6 3 #> 54: 4 6 4 6 4 #> 55: 5 6 5 6 5 #> 56: 6 6 6 6 6 #> 57: 7 6 7 6 6 #> 58: 8 6 8 6 6 #> 59: 9 6 9 6 6 #> 60: 10 6 10 6 6 #> 61: 1 7 1 7 1 #> 62: 2 7 2 7 2 #> 63: 3 7 3 7 3 #> 64: 4 7 4 7 4 #> 65: 5 7 5 7 5 #> 66: 6 7 6 7 6 #> 67: 7 7 7 7 7 #> 68: 8 7 8 7 7 #> 69: 9 7 9 7 7 #> 70: 10 7 10 7 7 #> 71: 1 8 1 8 1 #> 72: 2 8 2 8 2 #> 73: 3 8 3 8 3 #> 74: 4 8 4 8 4 #> 75: 5 8 5 8 5 #> 76: 6 8 6 8 6 #> 77: 7 8 7 8 7 #> 78: 8 8 8 8 8 #> 79: 9 8 9 8 8 #> 80: 10 8 10 8 8 #> 81: 1 9 1 9 1 #> 82: 2 9 2 9 2 #> 83: 3 9 3 9 3 #> 84: 4 9 4 9 4 #> 85: 5 9 5 9 5 #> 86: 6 9 6 9 6 #> 87: 7 9 7 9 7 #> 88: 8 9 8 9 8 #> 89: 9 9 9 9 9 #> 90: 10 9 10 9 9 #> 91: 1 10 1 10 1 #> 92: 2 10 2 10 2 #> 93: 3 10 3 10 3 #> 94: 4 10 4 10 4 #> 95: 5 10 5 10 5 #> 96: 6 10 6 10 6 #> 97: 7 10 7 10 7 #> 98: 8 10 8 10 8 #> 99: 9 10 9 10 9 #> 100: 10 10 10 10 10 #> conc conc2 metric1 metric2 metric n <- 10 sa1 <- data.table::data.table(conc = seq(n), conc2 = rep(0, n), smooth = seq(n)) sa2 <- data.table::data.table(conc = rep(0, n), conc2 = seq(n), smooth = seq(n)) calculate_Bliss(sa1, \"conc\", sa2, \"conc2\", \"smooth\") #> conc conc2 metric1 metric2 metric #> #> 1: 1 1 1 1 1 #> 2: 2 1 2 1 2 #> 3: 3 1 3 1 3 #> 4: 4 1 4 1 4 #> 5: 5 1 5 1 5 #> 6: 6 1 6 1 6 #> 7: 7 1 7 1 7 #> 8: 8 1 8 1 8 #> 9: 9 1 9 1 9 #> 10: 10 1 10 1 10 #> 11: 1 2 1 2 2 #> 12: 2 2 2 2 4 #> 13: 3 2 3 2 6 #> 14: 4 2 4 2 8 #> 15: 5 2 5 2 10 #> 16: 6 2 6 2 12 #> 17: 7 2 7 2 14 #> 18: 8 2 8 2 16 #> 19: 9 2 9 2 18 #> 20: 10 2 10 2 20 #> 21: 1 3 1 3 3 #> 22: 2 3 2 3 6 #> 23: 3 3 3 3 9 #> 24: 4 3 4 3 12 #> 25: 5 3 5 3 15 #> 26: 6 3 6 3 18 #> 27: 7 3 7 3 21 #> 28: 8 3 8 3 24 #> 29: 9 3 9 3 27 #> 30: 10 3 10 3 30 #> 31: 1 4 1 4 4 #> 32: 2 4 2 4 8 #> 33: 3 4 3 4 12 #> 34: 4 4 4 4 16 #> 35: 5 4 5 4 20 #> 36: 6 4 6 4 24 #> 37: 7 4 7 4 28 #> 38: 8 4 8 4 32 #> 39: 9 4 9 4 36 #> 40: 10 4 10 4 40 #> 41: 1 5 1 5 5 #> 42: 2 5 2 5 10 #> 43: 3 5 3 5 15 #> 44: 4 5 4 5 20 #> 45: 5 5 5 5 25 #> 46: 6 5 6 5 30 #> 47: 7 5 7 5 35 #> 48: 8 5 8 5 40 #> 49: 9 5 9 5 45 #> 50: 10 5 10 5 50 #> 51: 1 6 1 6 6 #> 52: 2 6 2 6 12 #> 53: 3 6 3 6 18 #> 54: 4 6 4 6 24 #> 55: 5 6 5 6 30 #> 56: 6 6 6 6 36 #> 57: 7 6 7 6 42 #> 58: 8 6 8 6 48 #> 59: 9 6 9 6 54 #> 60: 10 6 10 6 60 #> 61: 1 7 1 7 7 #> 62: 2 7 2 7 14 #> 63: 3 7 3 7 21 #> 64: 4 7 4 7 28 #> 65: 5 7 5 7 35 #> 66: 6 7 6 7 42 #> 67: 7 7 7 7 49 #> 68: 8 7 8 7 56 #> 69: 9 7 9 7 63 #> 70: 10 7 10 7 70 #> 71: 1 8 1 8 8 #> 72: 2 8 2 8 16 #> 73: 3 8 3 8 24 #> 74: 4 8 4 8 32 #> 75: 5 8 5 8 40 #> 76: 6 8 6 8 48 #> 77: 7 8 7 8 56 #> 78: 8 8 8 8 64 #> 79: 9 8 9 8 72 #> 80: 10 8 10 8 80 #> 81: 1 9 1 9 9 #> 82: 2 9 2 9 18 #> 83: 3 9 3 9 27 #> 84: 4 9 4 9 36 #> 85: 5 9 5 9 45 #> 86: 6 9 6 9 54 #> 87: 7 9 7 9 63 #> 88: 8 9 8 9 72 #> 89: 9 9 9 9 81 #> 90: 10 9 10 9 90 #> 91: 1 10 1 10 10 #> 92: 2 10 2 10 20 #> 93: 3 10 3 10 30 #> 94: 4 10 4 10 40 #> 95: 5 10 5 10 50 #> 96: 6 10 6 10 60 #> 97: 7 10 7 10 70 #> 98: 8 10 8 10 80 #> 99: 9 10 9 10 90 #> 100: 10 10 10 10 100 #> conc conc2 metric1 metric2 metric"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_score.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate score for HSA and Bliss — calculate_score","title":"Calculate score for HSA and Bliss — calculate_score","text":"Calculate score HSA Bliss","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_score.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate score for HSA and Bliss — calculate_score","text":"","code":"calculate_score(excess)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_score.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate score for HSA and Bliss — calculate_score","text":"excess numeric vector excess","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_score.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate score for HSA and Bliss — calculate_score","text":"numeric vector calculated score","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_score.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate score for HSA and Bliss — calculate_score","text":"","code":"metric <- data.table::data.table( Concentration = c(1, 2, 3, 1, 2, 3), Concentration_2 = c(1, 1, 1, 2, 2, 2), GRvalue = c(100, 200, 300, 400, 500, 600) ) measured <- data.table::data.table( Concentration = c(3, 1, 2, 2, 1, 3), Concentration_2 = c(1, 1, 1, 2, 2, 2), testvalue = c(200, 0, 100, 400, 300, 500) ) series_identifiers <- c(\"Concentration\", \"Concentration_2\") metric_col <- \"GRvalue\" measured_col <- \"testvalue\" x <- calculate_excess( metric, measured, series_identifiers, metric_col, measured_col ) calculate_score(x$x) #> [1] 100"},{"path":"https://gdrplatform.github.io/gDRcore/reference/cleanup_metadata.html","id":null,"dir":"Reference","previous_headings":"","what":"cleanup_metadata — cleanup_metadata","title":"cleanup_metadata — cleanup_metadata","text":"Cleanup data.table metadata","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/cleanup_metadata.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"cleanup_metadata — cleanup_metadata","text":"","code":"cleanup_metadata(df_metadata)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/cleanup_metadata.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"cleanup_metadata — cleanup_metadata","text":"df_metadata data.table metadata","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/cleanup_metadata.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"cleanup_metadata — cleanup_metadata","text":"data.table cleaned metadata","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/cleanup_metadata.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"cleanup_metadata — cleanup_metadata","text":"Adds annotations check whether user provided correct input data.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/cleanup_metadata.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"cleanup_metadata — cleanup_metadata","text":"","code":"df <- data.table::data.table( clid = \"CELL_LINE\", Gnumber = \"DRUG_1\", Concentration = c(0, 1), Duration = 72 ) cleanup_df <- cleanup_metadata(df)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_mae_to_raw_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Transform mae into raw data — convert_mae_to_raw_data","title":"Transform mae into raw data — convert_mae_to_raw_data","text":"Transform mae raw data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_mae_to_raw_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Transform mae into raw data — convert_mae_to_raw_data","text":"","code":"convert_mae_to_raw_data(mae)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_mae_to_raw_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Transform mae into raw data — convert_mae_to_raw_data","text":"mae MultiAssayExperiment object SummarizedExperiments containing \"RawTreated\" \"Controls\" assays","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_mae_to_raw_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Transform mae into raw data — convert_mae_to_raw_data","text":"data.table raw data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_mae_to_raw_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Transform mae into raw data — convert_mae_to_raw_data","text":"","code":"mae <- gDRutils::get_synthetic_data(\"finalMAE_small\") #> Loading required package: MultiAssayExperiment #> Loading required package: SummarizedExperiment #> Loading required package: MatrixGenerics #> Loading required package: matrixStats #> #> Attaching package: ‘MatrixGenerics’ #> The following objects are masked from ‘package:matrixStats’: #> #> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, #> colCounts, colCummaxs, colCummins, colCumprods, colCumsums, #> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, #> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, #> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, #> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, #> colWeightedMeans, colWeightedMedians, colWeightedSds, #> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, #> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, #> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, #> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, #> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, #> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, #> rowWeightedMads, rowWeightedMeans, rowWeightedMedians, #> rowWeightedSds, rowWeightedVars #> Loading required package: GenomicRanges #> Loading required package: stats4 #> Loading required package: BiocGenerics #> #> Attaching package: ‘BiocGenerics’ #> The following objects are masked from ‘package:stats’: #> #> IQR, mad, sd, var, xtabs #> The following objects are masked from ‘package:base’: #> #> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, #> as.data.frame, basename, cbind, colnames, dirname, do.call, #> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, #> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, #> pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, #> tapply, union, unique, unsplit, which.max, which.min #> Loading required package: S4Vectors #> #> Attaching package: ‘S4Vectors’ #> The following object is masked from ‘package:utils’: #> #> findMatches #> The following objects are masked from ‘package:base’: #> #> I, expand.grid, unname #> Loading required package: IRanges #> Loading required package: GenomeInfoDb #> Loading required package: Biobase #> Welcome to Bioconductor #> #> Vignettes contain introductory material; view with #> 'browseVignettes()'. To cite Bioconductor, see #> 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'. #> #> Attaching package: ‘Biobase’ #> The following object is masked from ‘package:MatrixGenerics’: #> #> rowMedians #> The following objects are masked from ‘package:matrixStats’: #> #> anyMissing, rowMedians convert_mae_to_raw_data(mae) #> Loading required package: BumpyMatrix #> Barcode Concentration masked ReadoutValue Gnumber DrugName drug_moa #> #> 1: plate_1 0 FALSE 95.7 vehicle vehicle vehicle #> 2: plate_1 0 FALSE 100.2 vehicle vehicle vehicle #> 3: plate_1 0 FALSE 102.6 vehicle vehicle vehicle #> 4: plate_1 0 FALSE 101.6 vehicle vehicle vehicle #> 5: plate_1 0 FALSE 99.9 vehicle vehicle vehicle #> --- #> 3296: plate_3 10 FALSE 57.7 G00011 drug_011 moa_B #> 3297: plate_3 10 FALSE 37.7 G00011 drug_011 moa_B #> 3298: plate_3 10 FALSE 28.6 G00011 drug_011 moa_B #> 3299: plate_3 10 FALSE 29.6 G00011 drug_011 moa_B #> 3300: plate_3 10 FALSE 11.0 G00011 drug_011 moa_B #> Duration clid CellLineName Tissue ReferenceDivisionTime #> #> 1: 72 CL00011 cellline_BA tissue_x 26 #> 2: 72 CL00012 cellline_CA tissue_x 30 #> 3: 72 CL00013 cellline_DA tissue_x 34 #> 4: 72 CL00014 cellline_EA tissue_x 38 #> 5: 72 CL00015 cellline_FA tissue_x 42 #> --- #> 3296: 72 CL00016 cellline_GB tissue_y 46 #> 3297: 72 CL00017 cellline_HB tissue_y 50 #> 3298: 72 CL00018 cellline_IB tissue_y 54 #> 3299: 72 CL00019 cellline_JB tissue_z 58 #> 3300: 72 CL00020 cellline_KB tissue_z 62"},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_se_to_raw_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Transform se into raw_data — convert_se_to_raw_data","title":"Transform se into raw_data — convert_se_to_raw_data","text":"Transform se raw_data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_se_to_raw_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Transform se into raw_data — convert_se_to_raw_data","text":"","code":"convert_se_to_raw_data(se)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_se_to_raw_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Transform se into raw_data — convert_se_to_raw_data","text":"se SummarizedExperiment object \"RawTreated\" \"Controls\" assays","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_se_to_raw_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Transform se into raw_data — convert_se_to_raw_data","text":"data.table raw data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/convert_se_to_raw_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Transform se into raw_data — convert_se_to_raw_data","text":"","code":"mae <- gDRutils::get_synthetic_data(\"finalMAE_small\") se <- mae[[1]] convert_se_to_raw_data(se) #> Barcode Concentration BackgroundValue record_id masked ReadoutValue #> #> 1: plate_1 0.001000000 0 601 FALSE 93.5 #> 2: plate_1 0.003162278 0 901 FALSE 74.8 #> 3: plate_1 0.010000000 0 1201 FALSE 40.1 #> 4: plate_1 0.031622777 0 1501 FALSE 33.2 #> 5: plate_1 0.100000000 0 1801 FALSE 31.5 #> --- #> 8696: plate_2 0.000000000 0 110 FALSE 104.0 #> 8697: plate_2 0.000000000 0 190 FALSE 104.1 #> 8698: plate_1 0.000000000 0 80 FALSE 104.4 #> 8699: plate_3 0.000000000 0 560 FALSE 104.6 #> 8700: plate_3 0.000000000 0 570 FALSE 104.7 #> Gnumber DrugName drug_moa Duration clid CellLineName Tissue #> #> 1: G00002 drug_002 moa_A 72 CL00011 cellline_BA tissue_x #> 2: G00002 drug_002 moa_A 72 CL00011 cellline_BA tissue_x #> 3: G00002 drug_002 moa_A 72 CL00011 cellline_BA tissue_x #> 4: G00002 drug_002 moa_A 72 CL00011 cellline_BA tissue_x #> 5: G00002 drug_002 moa_A 72 CL00011 cellline_BA tissue_x #> --- #> 8696: vehicle vehicle vehicle 72 CL00020 cellline_KB tissue_z #> 8697: vehicle vehicle vehicle 72 CL00020 cellline_KB tissue_z #> 8698: vehicle vehicle vehicle 72 CL00020 cellline_KB tissue_z #> 8699: vehicle vehicle vehicle 72 CL00020 cellline_KB tissue_z #> 8700: vehicle vehicle vehicle 72 CL00020 cellline_KB tissue_z #> ReferenceDivisionTime #> #> 1: 26 #> 2: 26 #> 3: 26 #> 4: 26 #> 5: 26 #> --- #> 8696: 62 #> 8697: 62 #> 8698: 62 #> 8699: 62 #> 8700: 62"},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.character.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect model of data from experiment name — data_model.character","title":"Detect model of data from experiment name — data_model.character","text":"Detect model data experiment name","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.character.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect model of data from experiment name — data_model.character","text":"","code":"# S3 method for character data_model(x)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.character.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect model of data from experiment name — data_model.character","text":"x character experiment name","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.character.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect model of data from experiment name — data_model.character","text":"string information raw data follows single-agent combination data model","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.data.table.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect model of data in data.table — data_model.data.table","title":"Detect model of data in data.table — data_model.data.table","text":"Detect model data data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.data.table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect model of data in data.table — data_model.data.table","text":"","code":"# S3 method for data.table data_model(x)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.data.table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect model of data in data.table — data_model.data.table","text":"x data.table raw drug response data containing treated untreated values.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.data.table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect model of data in data.table — data_model.data.table","text":"string information raw data follows single-agent combination data model","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect model of data — data_model","title":"Detect model of data — data_model","text":"Detect model data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect model of data — data_model","text":"","code":"data_model(x)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect model of data — data_model","text":"x data.table raw data SummarizedExperiment object gDR assays","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect model of data — data_model","text":"string information raw data follows single-agent combination data model","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/data_model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detect model of data — data_model","text":"","code":"data_model(\"single-agent\") #> [1] \"single-agent\""},{"path":"https://gdrplatform.github.io/gDRcore/reference/do_skip_step.html","id":null,"dir":"Reference","previous_headings":"","what":"check if the given step can be skipped if partial run is chosen — do_skip_step","title":"check if the given step can be skipped if partial run is chosen — do_skip_step","text":"check given step can skipped partial run chosen","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/do_skip_step.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"check if the given step can be skipped if partial run is chosen — do_skip_step","text":"","code":"do_skip_step(current_step, start_from, steps = get_pipeline_steps())"},{"path":"https://gdrplatform.github.io/gDRcore/reference/do_skip_step.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"check if the given step can be skipped if partial run is chosen — do_skip_step","text":"current_step, string step evaluated start_from string indicating pipeline step partial run launched steps charvect available steps","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/do_skip_step.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"check if the given step can be skipped if partial run is chosen — do_skip_step","text":"logical","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-map_references.html","id":null,"dir":"Reference","previous_headings":"","what":"Map references — .map_references","title":"Map references — .map_references","text":"Map references","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-map_references.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Map references — .map_references","text":"","code":".map_references( mat_elem, rowData_colnames = c(gDRutils::get_env_identifiers(\"duration\"), paste0(c(\"drug\", \"drug_name\", \"drug_moa\"), \"3\")) )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-map_references.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Map references — .map_references","text":"mat_elem input data frame rowData_colnames character vector variables mapping reference treatments","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-map_references.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Map references — .map_references","text":"list","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-map_references.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Map references — .map_references","text":"Using given rownames, map treated reference conditions.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-standardize_conc.html","id":null,"dir":"Reference","previous_headings":"","what":"Standardize concentration values. — .standardize_conc","title":"Standardize concentration values. — .standardize_conc","text":"Standardize concentration values.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-standardize_conc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Standardize concentration values. — .standardize_conc","text":"","code":".standardize_conc(conc)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-standardize_conc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Standardize concentration values. — .standardize_conc","text":"conc numeric vector concentrations","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-standardize_conc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Standardize concentration values. — .standardize_conc","text":"vector standardized concentrations","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-standardize_conc.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Standardize concentration values. — .standardize_conc","text":"conc passed, NULL returned.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/dot-standardize_conc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Standardize concentration values. — .standardize_conc","text":"","code":"concs <- 10 ^ (seq(-1, 1, 0.9)) .standardize_conc(concs) #> [1] 0.100 0.794 6.310"},{"path":"https://gdrplatform.github.io/gDRcore/reference/fit_SE.combinations.html","id":null,"dir":"Reference","previous_headings":"","what":"fit_SE for combination screens — fit_SE.combinations","title":"fit_SE for combination screens — fit_SE.combinations","text":"Perform fittings combination screens.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/fit_SE.combinations.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fit_SE for combination screens — fit_SE.combinations","text":"","code":"fit_SE.combinations( se, data_type = gDRutils::get_supported_experiments(\"combo\"), series_identifiers = NULL, normalization_types = c(\"GR\", \"RV\"), averaged_assay = \"Averaged\", metrics_assay = \"Metrics\", score_FUN = calculate_score )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/fit_SE.combinations.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fit_SE for combination screens — fit_SE.combinations","text":"se SummarizedExperiment object BumpyMatrix assay containing averaged data. data_type single-agent vs combination series_identifiers character vector column names nested DFrame corresponding nested identifiers. normalization_types character vector normalization types used calculating combo matrix. averaged_assay string name averaged assay use input. se. metrics_assay string name metrics assay output returned SummarizedExperiment. whose combination represents unique series fit curves. score_FUN function used calculate score HSA Bliss","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/fit_SE.combinations.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fit_SE for combination screens — fit_SE.combinations","text":"SummarizedExperiment object additional assay containing combination metrics.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/fit_SE.combinations.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"fit_SE for combination screens — fit_SE.combinations","text":"function assumes combination set concentrations nested assay.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/fit_SE.combinations.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fit_SE for combination screens — fit_SE.combinations","text":"","code":"fmae_cms <- gDRutils::get_synthetic_data(\"finalMAE_combo_matrix_small\") se1 <- fmae_cms[[gDRutils::get_supported_experiments(\"combo\")]] SummarizedExperiment::assays(se1) <- SummarizedExperiment::assays(se1)[\"Averaged\"] fit_SE.combinations(se1[1, 1]) #> Warning: overriding original x_0 argument '1' with '1' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '1' with '1' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.937720959525123' with '0.9563' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.411661143403833' with '0.4075' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '-0.466087101282737' with '-0.4678' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '-0.638711813665967' with '-0.5972' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '-0.652503025819596' with '-0.6296' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '-0.653485583859057' with '-0.692' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '-0.653555270839515' with '-0.7039' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '-0.653560191565576' with '-0.7046' (only 1 normalized value detected, setting constant fit) #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: overriding original x_0 argument '1' with '1' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '1' with '1' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.96010016590377' with '0.966' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.578859775899137' with '0.577' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.123503648078627' with '0.1259' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.0689925257550943' with '0.0814' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.0658336504167382' with '0.0714' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.0656619818287102' with '0.0535' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.0656526460997796' with '0.0503' (only 1 normalized value detected, setting constant fit) #> Warning: overriding original x_0 argument '0.0656521405542175' with '0.0501' (only 1 normalized value detected, setting constant fit) #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> class: SummarizedExperiment #> dim: 1 1 #> metadata(3): identifiers experiment_metadata Keys #> assays(6): Averaged excess ... scores Metrics #> rownames(1): G00004_drug_004_moa_A_G00021_drug_021_moa_D_72 #> rowData names(7): Gnumber DrugName ... drug_moa_2 Duration #> colnames(1): CL00016_cellline_GB_tissue_y_46 #> colData names(4): clid CellLineName Tissue ReferenceDivisionTime"},{"path":"https://gdrplatform.github.io/gDRcore/reference/gDRcore-package.html","id":null,"dir":"Reference","previous_headings":"","what":"gDRcore: Processing functions and interface to process and analyze drug dose-response data — gDRcore-package","title":"gDRcore: Processing functions and interface to process and analyze drug dose-response data — gDRcore-package","text":"package contains core functions process analyze drug response data. package provides tools normalizing, averaging, calculation gDR metrics data. core functions wrapped pipeline function allowing analyzing data straightforward way.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/gDRcore-package.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"gDRcore: Processing functions and interface to process and analyze drug dose-response data — gDRcore-package","text":"package help page","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/gDRcore-package.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"gDRcore: Processing functions and interface to process and analyze drug dose-response data — gDRcore-package","text":"learn functions start help(package = \"gDRcore\")","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/reference/gDRcore-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"gDRcore: Processing functions and interface to process and analyze drug dose-response data — gDRcore-package","text":"Maintainer: Arkadiusz Gladki gladki.arkadiusz@gmail.com (ORCID) Authors: Bartosz Czech bartosz.czech@contractors.roche.com (ORCID) Marc Hafner (ORCID) Pawel Piatkowski Natalia Potocka Dariusz Scigocki Janina Smola Sergiu Mocanu Marcin Kamianowski Allison Vuong","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateCodilution.html","id":null,"dir":"Reference","previous_headings":"","what":"generateCodilution — generateCodilution","title":"generateCodilution — generateCodilution","text":"generateCodilution","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateCodilution.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateCodilution — generateCodilution","text":"","code":"generateCodilution(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateCodilution.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateCodilution — generateCodilution","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateCodilutionSmall.html","id":null,"dir":"Reference","previous_headings":"","what":"generateCodilutionSmall — generateCodilutionSmall","title":"generateCodilutionSmall — generateCodilutionSmall","text":"generateCodilutionSmall","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateCodilutionSmall.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateCodilutionSmall — generateCodilutionSmall","text":"","code":"generateCodilutionSmall(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateCodilutionSmall.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateCodilutionSmall — generateCodilutionSmall","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboMatrix.html","id":null,"dir":"Reference","previous_headings":"","what":"generateComboMatrix — generateComboMatrix","title":"generateComboMatrix — generateComboMatrix","text":"generateComboMatrix","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboMatrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateComboMatrix — generateComboMatrix","text":"","code":"generateComboMatrix(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboMatrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateComboMatrix — generateComboMatrix","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboMatrixSmall.html","id":null,"dir":"Reference","previous_headings":"","what":"generateComboMatrixSmall — generateComboMatrixSmall","title":"generateComboMatrixSmall — generateComboMatrixSmall","text":"generateComboMatrixSmall","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboMatrixSmall.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateComboMatrixSmall — generateComboMatrixSmall","text":"","code":"generateComboMatrixSmall(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboMatrixSmall.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateComboMatrixSmall — generateComboMatrixSmall","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData.html","id":null,"dir":"Reference","previous_headings":"","what":"generateComboNoNoiseData — generateComboNoNoiseData","title":"generateComboNoNoiseData — generateComboNoNoiseData","text":"generateComboNoNoiseData","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateComboNoNoiseData — generateComboNoNoiseData","text":"","code":"generateComboNoNoiseData(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateComboNoNoiseData — generateComboNoNoiseData","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData2.html","id":null,"dir":"Reference","previous_headings":"","what":"generateComboNoNoiseData2 — generateComboNoNoiseData2","title":"generateComboNoNoiseData2 — generateComboNoNoiseData2","text":"generateComboNoNoiseData2","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateComboNoNoiseData2 — generateComboNoNoiseData2","text":"","code":"generateComboNoNoiseData2(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateComboNoNoiseData2 — generateComboNoNoiseData2","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData3.html","id":null,"dir":"Reference","previous_headings":"","what":"generateComboNoNoiseData3 — generateComboNoNoiseData3","title":"generateComboNoNoiseData3 — generateComboNoNoiseData3","text":"generateComboNoNoiseData3","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData3.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateComboNoNoiseData3 — generateComboNoNoiseData3","text":"","code":"generateComboNoNoiseData3(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateComboNoNoiseData3.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateComboNoNoiseData3 — generateComboNoNoiseData3","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateLigandData.html","id":null,"dir":"Reference","previous_headings":"","what":"generateLigandData — generateLigandData","title":"generateLigandData — generateLigandData","text":"generateLigandData","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateLigandData.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateLigandData — generateLigandData","text":"","code":"generateLigandData(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateLigandData.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateLigandData — generateLigandData","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateMediumData.html","id":null,"dir":"Reference","previous_headings":"","what":"generateMediumData — generateMediumData","title":"generateMediumData — generateMediumData","text":"generateMediumData","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateMediumData.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateMediumData — generateMediumData","text":"","code":"generateMediumData(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateMediumData.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateMediumData — generateMediumData","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateNoNoiseRawData.html","id":null,"dir":"Reference","previous_headings":"","what":"generateNoNoiseRawData — generateNoNoiseRawData","title":"generateNoNoiseRawData — generateNoNoiseRawData","text":"generateNoNoiseRawData","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateNoNoiseRawData.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateNoNoiseRawData — generateNoNoiseRawData","text":"","code":"generateNoNoiseRawData(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateNoNoiseRawData.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateNoNoiseRawData — generateNoNoiseRawData","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateNoiseRawData.html","id":null,"dir":"Reference","previous_headings":"","what":"generateNoiseRawData — generateNoiseRawData","title":"generateNoiseRawData — generateNoiseRawData","text":"generateNoiseRawData","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateNoiseRawData.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateNoiseRawData — generateNoiseRawData","text":"","code":"generateNoiseRawData(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateNoiseRawData.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateNoiseRawData — generateNoiseRawData","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateTripleComboMatrix.html","id":null,"dir":"Reference","previous_headings":"","what":"generateTripleComboMatrix — generateTripleComboMatrix","title":"generateTripleComboMatrix — generateTripleComboMatrix","text":"generateTripleComboMatrix","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateTripleComboMatrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"generateTripleComboMatrix — generateTripleComboMatrix","text":"","code":"generateTripleComboMatrix(cell_lines, drugs, save = TRUE)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/generateTripleComboMatrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"generateTripleComboMatrix — generateTripleComboMatrix","text":"data.table raw input data MAE processed data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_assays_per_pipeline_step.html","id":null,"dir":"Reference","previous_headings":"","what":"get info about created/present assays in SE at the given pipeline step — get_assays_per_pipeline_step","title":"get info about created/present assays in SE at the given pipeline step — get_assays_per_pipeline_step","text":"get info created/present assays SE given pipeline step","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_assays_per_pipeline_step.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"get info about created/present assays in SE at the given pipeline step — get_assays_per_pipeline_step","text":"","code":"get_assays_per_pipeline_step( step, data_model, status = c(\"created\", \"present\") )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_assays_per_pipeline_step.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"get info about created/present assays in SE at the given pipeline step — get_assays_per_pipeline_step","text":"step string pipeline step data_model single-agent vs combination status string return vector assays created present given step?","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_assays_per_pipeline_step.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"get info about created/present assays in SE at the given pipeline step — get_assays_per_pipeline_step","text":"assay","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cell_line_annotation.html","id":null,"dir":"Reference","previous_headings":"","what":"get_cell_line_annotation — get_cell_line_annotation","title":"get_cell_line_annotation — get_cell_line_annotation","text":"Get cell line annotation data table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cell_line_annotation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"get_cell_line_annotation — get_cell_line_annotation","text":"","code":"get_cell_line_annotation( data, fname = \"cell_lines.csv\", fill = \"unknown\", annotation_package = if (\"gDRinternal\" %in% .packages(all.available = TRUE)) { \"gDRinternal\" } else { \"gDRtestData\" } )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cell_line_annotation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"get_cell_line_annotation — get_cell_line_annotation","text":"data data.table cell line identifiers matched fname string file name containing annotation fill string indicating unknown cell lines filled DB annotation_package string indicating name package containing cell line annotation","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cell_line_annotation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"get_cell_line_annotation — get_cell_line_annotation","text":"data.table cell line annotations","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cell_line_annotation.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"get_cell_line_annotation — get_cell_line_annotation","text":"","code":"data <- data.table::data.table(clid = c(\"CL1\", \"CL2\", \"CL3\")) cell_line_annotation <- get_cell_line_annotation(data)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cellline_annotation_from_dt.html","id":null,"dir":"Reference","previous_headings":"","what":"Retrieve the cell line annotation from the annotated dt input — get_cellline_annotation_from_dt","title":"Retrieve the cell line annotation from the annotated dt input — get_cellline_annotation_from_dt","text":"Retrieve cell line annotation annotated dt input","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cellline_annotation_from_dt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Retrieve the cell line annotation from the annotated dt input — get_cellline_annotation_from_dt","text":"","code":"get_cellline_annotation_from_dt(dt)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cellline_annotation_from_dt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Retrieve the cell line annotation from the annotated dt input — get_cellline_annotation_from_dt","text":"dt annotated data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cellline_annotation_from_dt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Retrieve the cell line annotation from the annotated dt input — get_cellline_annotation_from_dt","text":"data.table cell line annotation","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_cellline_annotation_from_dt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Retrieve the cell line annotation from the annotated dt input — get_cellline_annotation_from_dt","text":"","code":"dt <- data.table::data.table(Gnumber = \"A\", clid = \"CL123\", CellLineName = \"cl name\", Tissue = \"Bone\", parental_identifier = \"some cl\", subtype = \"cortical\", ReferenceDivisionTime = 5) get_cellline_annotation_from_dt(dt) #> clid CellLineName Tissue parental_identifier subtype #> #> 1: CL123 cl name Bone some cl cortical #> ReferenceDivisionTime #> #> 1: 5"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_default_nested_identifiers.html","id":null,"dir":"Reference","previous_headings":"","what":"Get default nested identifiers — get_default_nested_identifiers","title":"Get default nested identifiers — get_default_nested_identifiers","text":"Get default nested identifiers","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_default_nested_identifiers.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get default nested identifiers — get_default_nested_identifiers","text":"","code":"get_default_nested_identifiers(x, data_model = NULL) # S3 method for data.table get_default_nested_identifiers(x, data_model = NULL) # S3 method for SummarizedExperiment get_default_nested_identifiers(x, data_model = NULL)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_default_nested_identifiers.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get default nested identifiers — get_default_nested_identifiers","text":"x data.table raw data SummarizedExperiment object gDR assays data_model single-agent vs combination","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_default_nested_identifiers.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get default nested identifiers — get_default_nested_identifiers","text":"vector nested identifiers","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_default_nested_identifiers.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get default nested identifiers — get_default_nested_identifiers","text":"","code":"get_default_nested_identifiers(data.table::data.table()) #> $`single-agent` #> [1] \"Concentration\" #> #> $combination #> [1] \"Concentration\" \"Concentration_2\" #>"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation.html","id":null,"dir":"Reference","previous_headings":"","what":"get_drug_annotation — get_drug_annotation","title":"get_drug_annotation — get_drug_annotation","text":"Get drug annotation data table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"get_drug_annotation — get_drug_annotation","text":"","code":"get_drug_annotation( data, fname = \"drugs.csv\", fill = \"unknown\", annotation_package = if (\"gDRinternal\" %in% .packages(all.available = TRUE)) { \"gDRinternal\" } else { \"gDRtestData\" } )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"get_drug_annotation — get_drug_annotation","text":"data data.table drug identifiers matched fname string file name containing annotation fill string indicating unknown drugs filled DB annotation_package string indicating name package containing drug annotation","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"get_drug_annotation — get_drug_annotation","text":"data.table drug annotations","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"get_drug_annotation — get_drug_annotation","text":"","code":"data <- data.table::data.table(Gnumber = c(\"drug1\", \"drug2\", \"drug3\")) drug_annotation <- get_drug_annotation(data)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation_from_dt.html","id":null,"dir":"Reference","previous_headings":"","what":"Retrieve the drug annotation from the annotated dt input — get_drug_annotation_from_dt","title":"Retrieve the drug annotation from the annotated dt input — get_drug_annotation_from_dt","text":"Retrieve drug annotation annotated dt input","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation_from_dt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Retrieve the drug annotation from the annotated dt input — get_drug_annotation_from_dt","text":"","code":"get_drug_annotation_from_dt(dt)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation_from_dt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Retrieve the drug annotation from the annotated dt input — get_drug_annotation_from_dt","text":"dt annotated data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation_from_dt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Retrieve the drug annotation from the annotated dt input — get_drug_annotation_from_dt","text":"data.table drug annotation","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_drug_annotation_from_dt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Retrieve the drug annotation from the annotated dt input — get_drug_annotation_from_dt","text":"","code":"dt <- data.table::data.table(Gnumber = \"A\", DrugName = \"drugA\", drug_moa = \"drug_moa_A\") get_drug_annotation_from_dt(dt) #> Gnumber DrugName drug_moa #> #> 1: A drugA drug_moa_A"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_mae_from_intermediate_data.html","id":null,"dir":"Reference","previous_headings":"","what":"get mae dataset from intermediate data — get_mae_from_intermediate_data","title":"get mae dataset from intermediate data — get_mae_from_intermediate_data","text":"get mae dataset intermediate data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_mae_from_intermediate_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"get mae dataset from intermediate data — get_mae_from_intermediate_data","text":"","code":"get_mae_from_intermediate_data(data_dir)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_mae_from_intermediate_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"get mae dataset from intermediate data — get_mae_from_intermediate_data","text":"data_dir directory intermediate data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_mae_from_intermediate_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"get mae dataset from intermediate data — get_mae_from_intermediate_data","text":"MAE object","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_pipeline_steps.html","id":null,"dir":"Reference","previous_headings":"","what":"get pipeline steps — get_pipeline_steps","title":"get pipeline steps — get_pipeline_steps","text":"get pipeline steps","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_pipeline_steps.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"get pipeline steps — get_pipeline_steps","text":"","code":"get_pipeline_steps()"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_pipeline_steps.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"get pipeline steps — get_pipeline_steps","text":"vector steps","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_relevant_ids.html","id":null,"dir":"Reference","previous_headings":"","what":"Function to get relevant identifiers from the environment — get_relevant_ids","title":"Function to get relevant identifiers from the environment — get_relevant_ids","text":"Function get relevant identifiers environment","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_relevant_ids.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Function to get relevant identifiers from the environment — get_relevant_ids","text":"","code":"get_relevant_ids(identifiers, dt)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_relevant_ids.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Function to get relevant identifiers from the environment — get_relevant_ids","text":"identifiers character vector identifier names fetch environment dt data.table containing columns checked identifiers","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/get_relevant_ids.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Function to get relevant identifiers from the environment — get_relevant_ids","text":"character vector relevant identifiers present data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/grr_matches.html","id":null,"dir":"Reference","previous_headings":"","what":"Value Matching — grr_matches","title":"Value Matching — grr_matches","text":"Returns lookup table list positions matches first argument second vice versa. Similar match, though function returns first match.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/grr_matches.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Value Matching — grr_matches","text":"","code":"grr_matches( x, y, all.x = TRUE, all.y = TRUE, list = FALSE, indexes = TRUE, nomatch = NA )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/grr_matches.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Value Matching — grr_matches","text":"x vector. values matched. Long vectors currently supported. y vector. values matched. Long vectors currently supported. .x logical; TRUE, value x included even matching values y .y logical; TRUE, value y included even matching values x list logical. TRUE, result returned list vectors, vector matching values y. FALSE, result returned data.table repeated values match. indexes logical. Whether return indices matches actual values. nomatch value returned case match found. provided indexes=TRUE, items match represented NA. set NULL, items match set index value length+1. indexes=FALSE, default NA.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/grr_matches.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Value Matching — grr_matches","text":"data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/grr_matches.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Value Matching — grr_matches","text":"behavior can imitated using joins create lookup tables, matches simpler faster: usually faster best joins packages thousands times faster built merge. .x/.y correspond four types database joins following way: left .x=TRUE, .y=FALSE right .x=FALSE, .y=TRUE inner .x=FALSE, .y=FALSE full .x=TRUE, .y=TRUE Note NA values match NA values. Source function: https://github.com/cran/grr/blob/master/R/grr.R","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/grr_matches.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Value Matching — grr_matches","text":"","code":"mat_elem <- data.table::data.table( DrugName = rep(c(\"untreated\", \"drugA\", \"drugB\", \"untreated\"), 2), DrugName_2 = rep(c(\"untreated\", \"vehicle\", \"drugA\", \"drugB\"), 2), clid = rep(c(\"C1\", \"C2\"), each = 4) ) untreated_tag <- gDRutils::get_env_identifiers(\"untreated_tag\") ref_idx <- which( mat_elem$DrugName %in% untreated_tag | mat_elem$DrugName_2 %in% untreated_tag ) ref <- mat_elem[ref_idx, ] treated <- mat_elem[-ref_idx, ] valid <- c(\"DrugName\", \"DrugName_2\") trt <- lapply(valid, function(x) { colnames <- c(\"clid\", x) treated[, colnames, with = FALSE] }) trt <- do.call(paste, do.call(rbind, lapply(trt, function(x) setNames(x, names(trt[[1]])))) ) ref <- lapply(valid, function(x) { colnames <- c(\"clid\", x) ref[, colnames, with = FALSE] }) ref <- do.call(paste, do.call(rbind, lapply(ref, function(x) setNames(x, names(ref[[1]])))) ) grr_matches(trt, ref, list = FALSE, all.y = FALSE) #> x y #> #> 1: 3 2 #> 2: 1 9 #> 3: 4 5 #> 4: 2 12"},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_data_type.html","id":null,"dir":"Reference","previous_headings":"","what":"Identify type of data — identify_data_type","title":"Identify type of data — identify_data_type","text":"Identify type data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_data_type.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Identify type of data — identify_data_type","text":"","code":"identify_data_type(dt, codilution_conc = 2, matrix_conc = 1)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_data_type.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Identify type of data — identify_data_type","text":"dt data.table raw drug response data containing treated untreated values codilution_conc integer maximum number concentration ratio co-treatment classify codilution data type; defaults 2 matrix_conc integer minimum number concentration pairs co-treatment classify co-treatment matrix data type; defaults 1","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_data_type.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Identify type of data — identify_data_type","text":"data.table raw drug response data additional column type info data type given row data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_data_type.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Identify type of data — identify_data_type","text":"Bartosz Czech bartosz.czech@contractors.roche.com","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_data_type.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Identify type of data — identify_data_type","text":"","code":"conc <- rep(seq(0, 0.3, 0.1), 2) ctrl_dt <- S4Vectors::DataFrame( ReadoutValue = c(2, 2, 1, 1, 2, 1), Concentration = rep(0, 6), masked = FALSE, DrugName = rep(c(\"DRUG_10\", \"vehicle\", \"DRUG_8\"), 2), CellLineName = \"CELL1\" ) trt_dt <- S4Vectors::DataFrame( ReadoutValue = rep(seq(1, 4, 1), 2), Concentration = conc, masked = rep(FALSE, 8), DrugName = c(\"DRUG_10\", \"DRUG_8\"), CellLineName = \"CELL1\" ) input_dt <- data.table::as.data.table(rbind(ctrl_dt, trt_dt)) input_dt$Duration <- 72 input_dt$CorrectedReadout2 <- input_dt$ReadoutValue identify_data_type(input_dt) #> ReadoutValue Concentration masked DrugName CellLineName Duration #> #> 1: 2 0.0 FALSE DRUG_10 CELL1 72 #> 2: 2 0.0 FALSE vehicle CELL1 72 #> 3: 1 0.0 FALSE DRUG_8 CELL1 72 #> 4: 1 0.0 FALSE DRUG_10 CELL1 72 #> 5: 2 0.0 FALSE vehicle CELL1 72 #> 6: 1 0.0 FALSE DRUG_8 CELL1 72 #> 7: 1 0.0 FALSE DRUG_10 CELL1 72 #> 8: 2 0.1 FALSE DRUG_8 CELL1 72 #> 9: 3 0.2 FALSE DRUG_10 CELL1 72 #> 10: 4 0.3 FALSE DRUG_8 CELL1 72 #> 11: 1 0.0 FALSE DRUG_10 CELL1 72 #> 12: 2 0.1 FALSE DRUG_8 CELL1 72 #> 13: 3 0.2 FALSE DRUG_10 CELL1 72 #> 14: 4 0.3 FALSE DRUG_8 CELL1 72 #> CorrectedReadout2 record_id type #> #> 1: 2 1 control #> 2: 2 2 control #> 3: 1 3 control #> 4: 1 4 control #> 5: 2 5 control #> 6: 1 6 control #> 7: 1 7 control #> 8: 2 8 single-agent #> 9: 3 9 single-agent #> 10: 4 10 single-agent #> 11: 1 11 control #> 12: 2 12 single-agent #> 13: 3 13 single-agent #> 14: 4 14 single-agent"},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_keys.html","id":null,"dir":"Reference","previous_headings":"","what":"identify_keys — identify_keys","title":"identify_keys — identify_keys","text":"Group columns data.table correspond different","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_keys.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"identify_keys — identify_keys","text":"","code":"identify_keys( df_, nested_keys = NULL, override_untrt_controls = NULL, identifiers = gDRutils::get_env_identifiers() )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_keys.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"identify_keys — identify_keys","text":"df_ data.table identify keys . nested_keys character vector keys exclude returned list. keys discarded identical keys third dimension SummarizedExperiment. Defaults \"Barcode\" masked identifier. override_untrt_controls named list containing defining factors treatments. Defaults NULL. identifiers named list containing identifiers use processing. default, value obtained environment.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_keys.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"identify_keys — identify_keys","text":"named list key types corresponding key values.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_keys.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"identify_keys — identify_keys","text":"likely used provenance tracking placed SummarizedExperiment metadata downstream analyses reference.","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/reference/identify_keys.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"identify_keys — identify_keys","text":"","code":"n <- 64 md_df <- data.table::data.table( Gnumber = rep(c(\"vehicle\", \"untreated\", paste0(\"G\", seq(2))), each = 16), DrugName = rep(c(\"vehicle\", \"untreated\", paste0(\"GN\", seq(2))), each = 16), clid = paste0(\"C\", rep_len(seq(4), n)), CellLineName = paste0(\"N\", rep_len(seq(4), n)), replicates = rep_len(paste0(\"R\", rep(seq(4), each = 4)), 64), drug_moa = \"inhibitor\", ReferenceDivisionTime = rep_len(c(120, 60), n), Tissue = \"Lung\", parental_identifier = \"CL12345\", Duration = 160 ) md_df <- unique(md_df) ref <- md_df$Gnumber %in% c(\"vehicle\", \"untreated\") trt_df <- md_df[!ref, ] identify_keys(trt_df) #> $Trt #> [1] \"Gnumber\" \"DrugName\" \"clid\" #> [4] \"CellLineName\" \"replicates\" \"drug_moa\" #> [7] \"Tissue\" \"parental_identifier\" \"Duration\" #> #> $ref_Endpoint #> [1] \"clid\" \"CellLineName\" \"replicates\" #> [4] \"Tissue\" \"parental_identifier\" \"Duration\" #> #> $untrt_Endpoint #> [1] \"clid\" \"CellLineName\" \"replicates\" #> [4] \"Tissue\" \"parental_identifier\" \"Duration\" #> #> $Day0 #> character(0) #> #> $nested_keys #> NULL #> #> $masked_tag #> [1] \"masked\" #> #> $cellline_name #> [1] \"CellLineName\" #> #> $cellline_ref_div_time #> [1] \"ReferenceDivisionTime\" #> #> $duration #> [1] \"Duration\" #> #> $untreated_tag #> [1] \"vehicle\" \"untreated\" #>"},{"path":"https://gdrplatform.github.io/gDRcore/reference/is_preceding_step.html","id":null,"dir":"Reference","previous_headings":"","what":"check if the given step is preceding the step chosen in the partial run — is_preceding_step","title":"check if the given step is preceding the step chosen in the partial run — is_preceding_step","text":"check given step preceding step chosen partial run","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/is_preceding_step.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"check if the given step is preceding the step chosen in the partial run — is_preceding_step","text":"","code":"is_preceding_step(current_step, start_from, steps = get_pipeline_steps())"},{"path":"https://gdrplatform.github.io/gDRcore/reference/is_preceding_step.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"check if the given step is preceding the step chosen in the partial run — is_preceding_step","text":"current_step, string step evaluated start_from string indicating pipeline step partial run launched steps charvect available steps","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/is_preceding_step.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"check if the given step is preceding the step chosen in the partial run — is_preceding_step","text":"logical","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_conc_to_standardized_conc.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a mapping of concentrations to standardized concentrations. — map_conc_to_standardized_conc","title":"Create a mapping of concentrations to standardized concentrations. — map_conc_to_standardized_conc","text":"Create mapping concentrations standardized concentrations.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_conc_to_standardized_conc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a mapping of concentrations to standardized concentrations. — map_conc_to_standardized_conc","text":"","code":"map_conc_to_standardized_conc(conc1, conc2)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_conc_to_standardized_conc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a mapping of concentrations to standardized concentrations. — map_conc_to_standardized_conc","text":"conc1 numeric vector concentrations drug 1. conc2 numeric vector concentrations drug 2.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_conc_to_standardized_conc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a mapping of concentrations to standardized concentrations. — map_conc_to_standardized_conc","text":"data.table 2 columns named \"concs\" \"rconcs\" containing original concentrations closest matched standardized concentrations respectively. new standardized concentrations.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_conc_to_standardized_conc.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Create a mapping of concentrations to standardized concentrations. — map_conc_to_standardized_conc","text":"concentrations standardized contain regularly spaced dilutions close values rounded.","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_conc_to_standardized_conc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a mapping of concentrations to standardized concentrations. — map_conc_to_standardized_conc","text":"","code":"ratio <- 0.5 conc1 <- c(0, 10 ^ (seq(-3, 1, ratio))) shorter_range <- conc1[-1] noise <- runif(length(shorter_range), 1e-12, 1e-11) conc2 <- shorter_range + noise map_conc_to_standardized_conc(conc1, conc2) #> concs rconcs #> #> 1: 0.000000000 0.00000 #> 2: 0.001000000 0.00100 #> 3: 0.003162278 0.00316 #> 4: 0.010000000 0.01000 #> 5: 0.031622777 0.03160 #> 6: 0.100000000 0.10000 #> 7: 0.316227766 0.31600 #> 8: 1.000000000 1.00000 #> 9: 3.162277660 3.16000 #> 10: 10.000000000 10.00000 #> 11: 0.001000000 0.00100 #> 12: 0.003162278 0.00316 #> 13: 0.010000000 0.01000 #> 14: 0.031622777 0.03160 #> 15: 0.100000000 0.10000 #> 16: 0.316227766 0.31600 #> 17: 1.000000000 1.00000 #> 18: 3.162277660 3.16000 #> 19: 10.000000000 10.00000"},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_df.html","id":null,"dir":"Reference","previous_headings":"","what":"Map treated conditions to their respective references. — map_df","title":"Map treated conditions to their respective references. — map_df","text":"Map treated conditions respective Day0, untreated, single-agent references using condition metadata.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_df.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Map treated conditions to their respective references. — map_df","text":"","code":"map_df( trt_md, ref_md, override_untrt_controls = NULL, ref_cols, ref_type = c(\"Day0\", \"untrt_Endpoint\") )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_df.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Map treated conditions to their respective references. — map_df","text":"trt_md data.table treated metadata. ref_md data.table untreated metadata. override_untrt_controls named list indicating treatment metadata fields used control. Defaults NULL. ref_cols character vector names reference columns include. Likely obtained identify_keys(). ref_type string reference type map . one c(\"Day0\", \"untrt_Endpoint\", \"ref_Endpoint\").","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_df.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Map treated conditions to their respective references. — map_df","text":"named list mapping treated metadata untreated metadata.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_df.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Map treated conditions to their respective references. — map_df","text":"override_untrt_controls specified, TODO: FILL !","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_df.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Map treated conditions to their respective references. — map_df","text":"","code":"n <- 64 md_df <- data.table::data.table( Gnumber = rep(c(\"vehicle\", \"untreated\", paste0(\"G\", seq(2))), each = 16), DrugName = rep(c(\"vehicle\", \"untreated\", paste0(\"GN\", seq(2))), each = 16), clid = paste0(\"C\", rep_len(seq(4), n)), CellLineName = paste0(\"N\", rep_len(seq(4), n)), replicates = rep_len(paste0(\"R\", rep(seq(4), each = 4)), 64), drug_moa = \"inhibitor\", ReferenceDivisionTime = rep_len(c(120, 60), n), Tissue = \"Lung\", parental_identifier = \"CL12345\", Duration = 160 ) md_df <- unique(md_df) ref <- md_df$Gnumber %in% c(\"vehicle\", \"untreated\") ref_df <- md_df[ref, ] trt_df <- md_df[!ref, ] Keys <- identify_keys(trt_df) ref_type <- \"untrt_Endpoint\" map_df( trt_df, ref_df, ref_cols = Keys[[ref_type]], ref_type = ref_type ) #> INFO [2024-12-18 16:03:24] #> [[1]] #> NULL #> #> [[2]] #> NULL #> #> [[3]] #> NULL #> #> [[4]] #> NULL #> #> [[5]] #> NULL #> #> [[6]] #> NULL #> #> [[7]] #> NULL #> #> [[8]] #> NULL #> #> [[9]] #> NULL #> #> [[10]] #> NULL #> #> [[11]] #> NULL #> #> [[12]] #> NULL #> #> [[13]] #> NULL #> #> [[14]] #> NULL #> #> [[15]] #> NULL #> #> [[16]] #> NULL #> #> [[17]] #> NULL #> #> [[18]] #> NULL #> #> [[19]] #> NULL #> #> [[20]] #> NULL #> #> [[21]] #> NULL #> #> [[22]] #> NULL #> #> [[23]] #> NULL #> #> [[24]] #> NULL #> #> [[25]] #> NULL #> #> [[26]] #> NULL #> #> [[27]] #> NULL #> #> [[28]] #> NULL #> #> [[29]] #> NULL #> #> [[30]] #> NULL #> #> [[31]] #> NULL #> #> [[32]] #> NULL #>"},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_ids_to_fits.html","id":null,"dir":"Reference","previous_headings":"","what":"Get predicted values for a given fit and input. — map_ids_to_fits","title":"Get predicted values for a given fit and input. — map_ids_to_fits","text":"Map fittings identifiers compute predicted values corresponding fits.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_ids_to_fits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get predicted values for a given fit and input. — map_ids_to_fits","text":"","code":"map_ids_to_fits(pred, match_col, fittings, fitting_id_col)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_ids_to_fits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get predicted values for a given fit and input. — map_ids_to_fits","text":"pred numeric vector want predictions. match_col vector match fittings get correct fit. fittings data.table fit metrics. fitting_id_col string column name fittings used match match_col .","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_ids_to_fits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get predicted values for a given fit and input. — map_ids_to_fits","text":"Numeric vector predicted values given pred inputs fittings values.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_ids_to_fits.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get predicted values for a given fit and input. — map_ids_to_fits","text":"","code":"pred <- c(1, 5, 5) match_col <- c(1, 1, 2) fitting_id_col <- \"match_on_me\" fit1 <- data.table::data.table(h = 2.09, x_inf = 0.68, x_0 = 1, ec50 = 0.003) fit2 <- data.table::data.table(h = 0.906, x_inf = 0.46, x_0 = 1, ec50 = 0.001) fittings <- do.call(rbind, list(fit1, fit2)) fittings[[fitting_id_col]] <- c(1, 2) map_ids_to_fits(pred, match_col, fittings, fitting_id_col) #> [1] 0.6800017 0.6800001 0.4602404"},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_untreated.html","id":null,"dir":"Reference","previous_headings":"","what":"Identify untreated rows based on Drug treatment alone — map_untreated","title":"Identify untreated rows based on Drug treatment alone — map_untreated","text":"Identify untreated rows based Drug treatment alone","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_untreated.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Identify untreated rows based on Drug treatment alone — map_untreated","text":"","code":"map_untreated(mat_elem)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_untreated.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Identify untreated rows based on Drug treatment alone — map_untreated","text":"mat_elem input data frame","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_untreated.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Identify untreated rows based on Drug treatment alone — map_untreated","text":"list","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/map_untreated.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Identify untreated rows based on Drug treatment alone — map_untreated","text":"Using given rownames, map untreated conditions","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/merge_data.html","id":null,"dir":"Reference","previous_headings":"","what":"merge_data — merge_data","title":"merge_data — merge_data","text":"Merge input data single data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/merge_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"merge_data — merge_data","text":"","code":"merge_data(manifest, treatments, data)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/merge_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"merge_data — merge_data","text":"manifest data.table manifest info treatments data.table treaatments info data data.table raw data info","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/merge_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"merge_data — merge_data","text":"data.table merged data metadata.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/merge_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"merge_data — merge_data","text":"","code":"td <- gDRimport::get_test_data() l_tbl <- gDRimport::load_data( manifest_file = gDRimport::manifest_path(td), df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) #> INFO [2024-12-18 16:03:25] Manifest loaded successfully #> INFO [2024-12-18 16:03:25] Reading Template_7daytreated.xlsx with load_templates_xlsx #> INFO [2024-12-18 16:03:25] Loading Template_7daytreated.xlsx #> INFO [2024-12-18 16:03:25] Loading Template_Untreated.xlsx #> INFO [2024-12-18 16:03:25] Templates loaded successfully! #> INFO [2024-12-18 16:03:25] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:25] Plate 201904190a read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904190b read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904190c read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904190d read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904190e read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904190f read; 384 wells #> INFO [2024-12-18 16:03:25] File done #> INFO [2024-12-18 16:03:25] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:25] Plate 201904197a read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904197b read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904197c read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904197d read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904197e read; 384 wells #> INFO [2024-12-18 16:03:25] Plate 201904197f read; 384 wells #> INFO [2024-12-18 16:03:25] File done merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) #> INFO [2024-12-18 16:03:25] Merging data #> INFO [2024-12-18 16:03:25] Merging the metadata (manifest and treatment files) #> WARN [2024-12-18 16:03:25] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> #> CellLineName Tissue Duration DrugName Concentration DrugName_2 #> #> 1: cellline_BA breast 0 vehicle 0 vehicle #> 2: cellline_BA breast 0 vehicle 0 vehicle #> 3: cellline_BA breast 0 vehicle 0 vehicle #> 4: cellline_BA breast 0 vehicle 0 vehicle #> 5: cellline_BA breast 0 vehicle 0 vehicle #> --- #> 3836: cellline_IB breast 168 vehicle 0 vehicle #> 3837: cellline_IB breast 168 vehicle 0 vehicle #> 3838: cellline_IB breast 168 vehicle 0 vehicle #> 3839: cellline_IB breast 168 vehicle 0 vehicle #> 3840: cellline_IB breast 168 vehicle 0 vehicle #> Concentration_2 drug_moa drug_moa_2 parental_identifier subtype #> #> 1: 0 vehicle vehicle cellline_BA unknown #> 2: 0 vehicle vehicle cellline_BA unknown #> 3: 0 vehicle vehicle cellline_BA unknown #> 4: 0 vehicle vehicle cellline_BA unknown #> 5: 0 vehicle vehicle cellline_BA unknown #> --- #> 3836: 0 vehicle vehicle cellline_IB unknown #> 3837: 0 vehicle vehicle cellline_IB unknown #> 3838: 0 vehicle vehicle cellline_IB unknown #> 3839: 0 vehicle vehicle cellline_IB unknown #> 3840: 0 vehicle vehicle cellline_IB unknown #> Barcode Template ReadoutValue BackgroundValue #> #> 1: 201904190a Template_Untreated.xlsx 91452 570 #> 2: 201904190a Template_Untreated.xlsx 126448 570 #> 3: 201904190a Template_Untreated.xlsx 91461 570 #> 4: 201904190a Template_Untreated.xlsx 126449 570 #> 5: 201904190a Template_Untreated.xlsx 91459 570 #> --- #> 3836: 201904197f Template_7daytreated.xlsx 788743 395 #> 3837: 201904197f Template_7daytreated.xlsx 359748 395 #> 3838: 201904197f Template_7daytreated.xlsx 405491 395 #> 3839: 201904197f Template_7daytreated.xlsx 575063 395 #> 3840: 201904197f Template_7daytreated.xlsx 854686 395 #> ReferenceDivisionTime clid Gnumber Gnumber_2 WellRow WellColumn #> #> 1: 26 CL00011 vehicle vehicle A 3 #> 2: 26 CL00011 vehicle vehicle B 3 #> 3: 26 CL00011 vehicle vehicle C 3 #> 4: 26 CL00011 vehicle vehicle D 3 #> 5: 26 CL00011 vehicle vehicle E 3 #> --- #> 3836: 54 CL00018 vehicle vehicle D 22 #> 3837: 54 CL00018 vehicle vehicle I 22 #> 3838: 54 CL00018 vehicle vehicle J 22 #> 3839: 54 CL00018 vehicle vehicle K 22 #> 3840: 54 CL00018 vehicle vehicle L 22"},{"path":"https://gdrplatform.github.io/gDRcore/reference/order_result_df.html","id":null,"dir":"Reference","previous_headings":"","what":"Order_result_df — order_result_df","title":"Order_result_df — order_result_df","text":"Order data.table results","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/order_result_df.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Order_result_df — order_result_df","text":"","code":"order_result_df(df_)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/order_result_df.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Order_result_df — order_result_df","text":"df_ data.table results","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/order_result_df.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Order_result_df — order_result_df","text":"ordered data.table results","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.MultiAssayExperiment.html","id":null,"dir":"Reference","previous_headings":"","what":"Prepare input data common for all experiments — prepare_input.MultiAssayExperiment","title":"Prepare input data common for all experiments — prepare_input.MultiAssayExperiment","text":"Current steps refining nested confounders refining nested identifiers splitting df_ (per experiment) df_list","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.MultiAssayExperiment.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prepare input data common for all experiments — prepare_input.MultiAssayExperiment","text":"","code":"# S3 method for MultiAssayExperiment prepare_input( x, nested_confounders = gDRutils::get_SE_identifiers(x[[1]], \"barcode\"), nested_identifiers_l = .get_default_nested_identifiers(x[[1]]), raw_data_field = \"experiment_raw_data\", split_data = TRUE, ... )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.MultiAssayExperiment.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prepare input data common for all experiments — prepare_input.MultiAssayExperiment","text":"x MAE object dose-response data nested_confounders Character vector nested_confounders given assay. nested_keys character vector column names include data.tables assays resulting SummarizedExperiment object. Defaults nested_identifiers nested_confounders passed nested_identifiers_l list nested_identifiers(character vectors) single-agent (optionally) combination data raw_data_field metadata field raw data split_data Boolean indicating need splitting data experiment types ... additional parameters","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.MultiAssayExperiment.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prepare input data common for all experiments — prepare_input.MultiAssayExperiment","text":"list input data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.data.table.html","id":null,"dir":"Reference","previous_headings":"","what":"Prepare input data common for all experiments — prepare_input.data.table","title":"Prepare input data common for all experiments — prepare_input.data.table","text":"Current steps refining nested confounders refining nested identifiers splitting df_ (per experiment) df_list","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.data.table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prepare input data common for all experiments — prepare_input.data.table","text":"","code":"# S3 method for data.table prepare_input( x, nested_confounders = gDRutils::get_env_identifiers(\"barcode\"), nested_identifiers_l = .get_default_nested_identifiers(), ... )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.data.table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prepare input data common for all experiments — prepare_input.data.table","text":"x data.table raw data nested_confounders Character vector nested_confounders given assay. nested_keys character vector column names include data.tables assays resulting SummarizedExperiment object. Defaults nested_identifiers nested_confounders passed nested_identifiers_l list nested_identifiers(character vectors) single-agent (optionally) combination data ... additional parameters","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.data.table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prepare input data common for all experiments — prepare_input.data.table","text":"list input data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.html","id":null,"dir":"Reference","previous_headings":"","what":"Prepare input data common for all experiments — prepare_input","title":"Prepare input data common for all experiments — prepare_input","text":"Current steps refining nested confounders refining nested identifiers splitting df_ (per experiment) df_list","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prepare input data common for all experiments — prepare_input","text":"","code":"prepare_input(x, ...)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prepare input data common for all experiments — prepare_input","text":"x data.table raw data MAE object dose-response data ... additional parameters","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prepare input data common for all experiments — prepare_input","text":"list input data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/prepare_input.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prepare input data common for all experiments — prepare_input","text":"","code":"td <- gDRimport::get_test_data() l_tbl <- gDRimport::load_data( manifest_file = gDRimport::manifest_path(td), df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) #> INFO [2024-12-18 16:03:27] Manifest loaded successfully #> INFO [2024-12-18 16:03:27] Reading Template_7daytreated.xlsx with load_templates_xlsx #> INFO [2024-12-18 16:03:27] Loading Template_7daytreated.xlsx #> INFO [2024-12-18 16:03:27] Loading Template_Untreated.xlsx #> INFO [2024-12-18 16:03:27] Templates loaded successfully! #> INFO [2024-12-18 16:03:27] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:27] Plate 201904190a read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904190b read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904190c read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904190d read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904190e read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904190f read; 384 wells #> INFO [2024-12-18 16:03:27] File done #> INFO [2024-12-18 16:03:27] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:27] Plate 201904197a read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904197b read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904197c read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904197d read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904197e read; 384 wells #> INFO [2024-12-18 16:03:27] Plate 201904197f read; 384 wells #> INFO [2024-12-18 16:03:27] File done df_ <- merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) #> INFO [2024-12-18 16:03:27] Merging data #> INFO [2024-12-18 16:03:27] Merging the metadata (manifest and treatment files) #> WARN [2024-12-18 16:03:27] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> nested_confounders = intersect( names(df_), gDRutils::get_env_identifiers(\"barcode\") ) prepare_input(df_, nested_confounders, NULL) #> $df_ #> CellLineName Tissue Duration DrugName Concentration DrugName_2 #> #> 1: cellline_BA breast 0 vehicle 0 vehicle #> 2: cellline_BA breast 0 vehicle 0 vehicle #> 3: cellline_BA breast 0 vehicle 0 vehicle #> 4: cellline_BA breast 0 vehicle 0 vehicle #> 5: cellline_BA breast 0 vehicle 0 vehicle #> --- #> 3836: cellline_IB breast 168 vehicle 0 vehicle #> 3837: cellline_IB breast 168 vehicle 0 vehicle #> 3838: cellline_IB breast 168 vehicle 0 vehicle #> 3839: cellline_IB breast 168 vehicle 0 vehicle #> 3840: cellline_IB breast 168 vehicle 0 vehicle #> Concentration_2 drug_moa drug_moa_2 parental_identifier subtype #> #> 1: 0 vehicle vehicle cellline_BA unknown #> 2: 0 vehicle vehicle cellline_BA unknown #> 3: 0 vehicle vehicle cellline_BA unknown #> 4: 0 vehicle vehicle cellline_BA unknown #> 5: 0 vehicle vehicle cellline_BA unknown #> --- #> 3836: 0 vehicle vehicle cellline_IB unknown #> 3837: 0 vehicle vehicle cellline_IB unknown #> 3838: 0 vehicle vehicle cellline_IB unknown #> 3839: 0 vehicle vehicle cellline_IB unknown #> 3840: 0 vehicle vehicle cellline_IB unknown #> Barcode Template ReadoutValue BackgroundValue #> #> 1: 201904190a Template_Untreated.xlsx 91452 570 #> 2: 201904190a Template_Untreated.xlsx 126448 570 #> 3: 201904190a Template_Untreated.xlsx 91461 570 #> 4: 201904190a Template_Untreated.xlsx 126449 570 #> 5: 201904190a Template_Untreated.xlsx 91459 570 #> --- #> 3836: 201904197f Template_7daytreated.xlsx 788743 395 #> 3837: 201904197f Template_7daytreated.xlsx 359748 395 #> 3838: 201904197f Template_7daytreated.xlsx 405491 395 #> 3839: 201904197f Template_7daytreated.xlsx 575063 395 #> 3840: 201904197f Template_7daytreated.xlsx 854686 395 #> ReferenceDivisionTime clid Gnumber Gnumber_2 WellRow WellColumn #> #> 1: 26 CL00011 vehicle vehicle A 3 #> 2: 26 CL00011 vehicle vehicle B 3 #> 3: 26 CL00011 vehicle vehicle C 3 #> 4: 26 CL00011 vehicle vehicle D 3 #> 5: 26 CL00011 vehicle vehicle E 3 #> --- #> 3836: 54 CL00018 vehicle vehicle D 22 #> 3837: 54 CL00018 vehicle vehicle I 22 #> 3838: 54 CL00018 vehicle vehicle J 22 #> 3839: 54 CL00018 vehicle vehicle K 22 #> 3840: 54 CL00018 vehicle vehicle L 22 #> record_id type #> #> 1: 1 control #> 2: 2 control #> 3: 3 control #> 4: 4 control #> 5: 5 control #> --- #> 3836: 3836 control #> 3837: 3837 control #> 3838: 3838 control #> 3839: 3839 control #> 3840: 3840 control #> #> $df_list #> $df_list$combination #> CellLineName Tissue Duration DrugName Concentration DrugName_2 #> #> 1: cellline_BA breast 168 drug_002 0.001524158 drug_011 #> 2: cellline_BA breast 168 drug_002 0.001524158 drug_011 #> 3: cellline_BA breast 168 drug_002 0.001524158 drug_011 #> 4: cellline_BA breast 168 drug_002 0.001524158 drug_011 #> 5: cellline_BA breast 168 drug_002 0.001524158 drug_011 #> --- #> 3836: cellline_IB breast 168 drug_011 0.149999911 vehicle #> 3837: cellline_IB breast 168 drug_011 0.149999911 vehicle #> 3838: cellline_IB breast 168 drug_011 0.149999911 vehicle #> 3839: cellline_IB breast 168 drug_011 0.149999911 vehicle #> 3840: cellline_IB breast 168 drug_011 0.149999911 vehicle #> Concentration_2 drug_moa drug_moa_2 parental_identifier subtype #> #> 1: 0.1499999 moa_A moa_B cellline_BA unknown #> 2: 0.1499999 moa_A moa_B cellline_BA unknown #> 3: 0.1499999 moa_A moa_B cellline_BA unknown #> 4: 0.1499999 moa_A moa_B cellline_BA unknown #> 5: 0.1499999 moa_A moa_B cellline_BA unknown #> --- #> 3836: 0.0000000 moa_B vehicle cellline_IB unknown #> 3837: 0.0000000 moa_B vehicle cellline_IB unknown #> 3838: 0.0000000 moa_B vehicle cellline_IB unknown #> 3839: 0.0000000 moa_B vehicle cellline_IB unknown #> 3840: 0.0000000 moa_B vehicle cellline_IB unknown #> Barcode Template ReadoutValue BackgroundValue #> #> 1: 201904197a Template_7daytreated.xlsx 102301 570 #> 2: 201904197a Template_7daytreated.xlsx 76966 570 #> 3: 201904197a Template_7daytreated.xlsx 461220 570 #> 4: 201904197a Template_7daytreated.xlsx 497047 570 #> 5: 201904197a Template_7daytreated.xlsx 64611 570 #> --- #> 3836: 201904197f Template_7daytreated.xlsx 383366 395 #> 3837: 201904197f Template_7daytreated.xlsx 133207 395 #> 3838: 201904197f Template_7daytreated.xlsx 204959 395 #> 3839: 201904197f Template_7daytreated.xlsx 323669 395 #> 3840: 201904197f Template_7daytreated.xlsx 387380 395 #> ReferenceDivisionTime clid Gnumber Gnumber_2 WellRow WellColumn #> #> 1: 26 CL00011 G00002 G00011 E 19 #> 2: 26 CL00011 G00002 G00011 F 19 #> 3: 26 CL00011 G00002 G00011 G 19 #> 4: 26 CL00011 G00002 G00011 H 19 #> 5: 26 CL00011 G00002 G00011 E 20 #> --- #> 3836: 54 CL00018 G00011 vehicle H 22 #> 3837: 54 CL00018 G00011 vehicle M 22 #> 3838: 54 CL00018 G00011 vehicle N 22 #> 3839: 54 CL00018 G00011 vehicle O 22 #> 3840: 54 CL00018 G00011 vehicle P 22 #> record_id #> #> 1: 321 #> 2: 322 #> 3: 323 #> 4: 324 #> 5: 325 #> --- #> 3836: 3820 #> 3837: 3821 #> 3838: 3822 #> 3839: 3823 #> 3840: 3824 #> #> $df_list$`single-agent` #> CellLineName Tissue Duration DrugName Concentration drug_moa #> #> 1: cellline_BA breast 168 drug_002 0.001524158 moa_A #> 2: cellline_BA breast 168 drug_002 0.001524158 moa_A #> 3: cellline_BA breast 168 drug_002 0.001524158 moa_A #> 4: cellline_BA breast 168 drug_002 0.001524158 moa_A #> 5: cellline_BA breast 168 drug_002 0.001524158 moa_A #> --- #> 2972: cellline_IB breast 168 vehicle 0.000000000 vehicle #> 2973: cellline_IB breast 168 vehicle 0.000000000 vehicle #> 2974: cellline_IB breast 168 vehicle 0.000000000 vehicle #> 2975: cellline_IB breast 168 vehicle 0.000000000 vehicle #> 2976: cellline_IB breast 168 vehicle 0.000000000 vehicle #> parental_identifier subtype Barcode Template #> #> 1: cellline_BA unknown 201904197a Template_7daytreated.xlsx #> 2: cellline_BA unknown 201904197a Template_7daytreated.xlsx #> 3: cellline_BA unknown 201904197a Template_7daytreated.xlsx #> 4: cellline_BA unknown 201904197a Template_7daytreated.xlsx #> 5: cellline_BA unknown 201904197a Template_7daytreated.xlsx #> --- #> 2972: cellline_IB unknown 201904197f Template_7daytreated.xlsx #> 2973: cellline_IB unknown 201904197f Template_7daytreated.xlsx #> 2974: cellline_IB unknown 201904197f Template_7daytreated.xlsx #> 2975: cellline_IB unknown 201904197f Template_7daytreated.xlsx #> 2976: cellline_IB unknown 201904197f Template_7daytreated.xlsx #> ReadoutValue BackgroundValue ReferenceDivisionTime clid Gnumber #> #> 1: 159679 570 26 CL00011 G00002 #> 2: 165488 570 26 CL00011 G00002 #> 3: 1169641 570 26 CL00011 G00002 #> 4: 1346753 570 26 CL00011 G00002 #> 5: 112168 570 26 CL00011 G00002 #> --- #> 2972: 788743 395 54 CL00018 vehicle #> 2973: 359748 395 54 CL00018 vehicle #> 2974: 405491 395 54 CL00018 vehicle #> 2975: 575063 395 54 CL00018 vehicle #> 2976: 854686 395 54 CL00018 vehicle #> WellRow WellColumn record_id #> #> 1: A 19 329 #> 2: B 19 330 #> 3: C 19 331 #> 4: D 19 332 #> 5: A 20 333 #> --- #> 2972: D 22 3836 #> 2973: I 22 3837 #> 2974: J 22 3838 #> 2975: K 22 3839 #> 2976: L 22 3840 #> #> #> $nested_confounders #> [1] \"Barcode\" #> #> $nested_identifiers_l #> $nested_identifiers_l$`single-agent` #> [1] \"Concentration\" #> #> $nested_identifiers_l$combination #> [1] \"Concentration\" \"Concentration_2\" #> #> #> $exps #> $exps$combination #> NULL #> #> $exps$`single-agent` #> NULL #> #>"},{"path":"https://gdrplatform.github.io/gDRcore/reference/process_perturbations.html","id":null,"dir":"Reference","previous_headings":"","what":"Cleanup additional perturbations in the data.table — process_perturbations","title":"Cleanup additional perturbations in the data.table — process_perturbations","text":"function processes drug concentration columns data.table. checks one unique drug (excluding specified untreated tag) exactly two doses (one 0). conditions met, creates new column named drug fills doses, removes original drug concentration columns.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/process_perturbations.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cleanup additional perturbations in the data.table — process_perturbations","text":"","code":"process_perturbations( dt, drugs_cotrt_ids, conc_cotrt_ids, untreated_tag = \"vehicle\" )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/process_perturbations.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cleanup additional perturbations in the data.table — process_perturbations","text":"dt data.table containing data. drugs_cotrt_ids vector column names related drugs. conc_cotrt_ids vector column names related concentrations. untreated_tag string representing untreated tag (default \"vehicle\").","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/process_perturbations.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cleanup additional perturbations in the data.table — process_perturbations","text":"modified data.table new columns drugs removed original drug concentration columns.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/process_perturbations.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cleanup additional perturbations in the data.table — process_perturbations","text":"","code":"dt <- data.table::data.table( drug1 = c(\"vehicle\", \"drugA\", \"drugA\"), conc1 = c(0, 10, 0), drug2 = c(\"vehicle\", \"drugB\", \"drugB\"), conc2 = c(0, 20, 0) ) drugs_cotrt_ids <- c(\"drug1\", \"drug2\") conc_cotrt_ids <- c(\"conc1\", \"conc2\") dt <- process_perturbations(dt, drugs_cotrt_ids, conc_cotrt_ids) print(dt) #> drugA drugB #> #> 1: 0 0 #> 2: 10 20 #> 3: 0 0"},{"path":"https://gdrplatform.github.io/gDRcore/reference/read_intermediate_data.html","id":null,"dir":"Reference","previous_headings":"","what":"read intermediate data for the given experiment and step to qs file — read_intermediate_data","title":"read intermediate data for the given experiment and step to qs file — read_intermediate_data","text":"read intermediate data given experiment step qs file","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/read_intermediate_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"read intermediate data for the given experiment and step to qs file — read_intermediate_data","text":"","code":"read_intermediate_data(path, step, experiment)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/read_intermediate_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"read intermediate data for the given experiment and step to qs file — read_intermediate_data","text":"path string input directory qs file step, string step name experiment string experiment name","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/read_intermediate_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"read intermediate data for the given experiment and step to qs file — read_intermediate_data","text":"se","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/remove_drug_batch.html","id":null,"dir":"Reference","previous_headings":"","what":"Remove batch from Gnumber — remove_drug_batch","title":"Remove batch from Gnumber — remove_drug_batch","text":"Remove batch Gnumber","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/remove_drug_batch.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Remove batch from Gnumber — remove_drug_batch","text":"","code":"remove_drug_batch(drug)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/remove_drug_batch.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Remove batch from Gnumber — remove_drug_batch","text":"drug drug name","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/remove_drug_batch.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Remove batch from Gnumber — remove_drug_batch","text":"Gnumber without batch","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/remove_drug_batch.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Remove batch from Gnumber — remove_drug_batch","text":"","code":"remove_drug_batch(\"DRUG.123\") #> [1] \"DRUG\""},{"path":"https://gdrplatform.github.io/gDRcore/reference/replace_conc_with_standardized_conc.html","id":null,"dir":"Reference","previous_headings":"","what":"Standardize concentrations. — replace_conc_with_standardized_conc","title":"Standardize concentrations. — replace_conc_with_standardized_conc","text":"Utilize map standardize concentrations.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/replace_conc_with_standardized_conc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Standardize concentrations. — replace_conc_with_standardized_conc","text":"","code":"replace_conc_with_standardized_conc( original_concs, conc_map, original_conc_col, standardized_conc_col )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/replace_conc_with_standardized_conc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Standardize concentrations. — replace_conc_with_standardized_conc","text":"original_concs numeric vector concentrations replace using conc_map. conc_map data.table two columns named original_conc_col standardized_conc_col. original_conc_col string name column conc_map containing original concentrations replace. standardized_conc_col string name column conc_map containing standardized concentrations use replacement.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/replace_conc_with_standardized_conc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Standardize concentrations. — replace_conc_with_standardized_conc","text":"numeric vector standardized concentrations.","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/reference/replace_conc_with_standardized_conc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Standardize concentrations. — replace_conc_with_standardized_conc","text":"","code":"conc_map <- data.table::data.table( orig = c(0.99, 0.6, 0.456, 0.4), std = c(1, 0.6, 0.46, 0.4) ) original_concs <- c(0.456, 0.456, 0.4, 0.99) exp <- c(0.46, 0.46, 0.4, 1) obs <- replace_conc_with_standardized_conc( original_concs, conc_map, original_conc_col = \"orig\", standardized_conc_col = \"std\" )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/runDrugResponseProcessingPipelineFxns.html","id":null,"dir":"Reference","previous_headings":"","what":"Run drug response processing pipeline — average_SE","title":"Run drug response processing pipeline — average_SE","text":"Run different components gDR drug response processing pipeline. Either: create SummarizedExperiment normalize raw treated control data (create_and_normalize_SE), average data (average_SE), fit processed data (fit_SE). See details -depth explanations.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/runDrugResponseProcessingPipelineFxns.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Run drug response processing pipeline — average_SE","text":"","code":"average_SE( se, data_type, series_identifiers = NULL, override_masked = FALSE, normalized_assay = \"Normalized\", averaged_assay = \"Averaged\" ) create_SE( df_, data_type, readout = \"ReadoutValue\", nested_identifiers = NULL, nested_confounders = intersect(names(df_), gDRutils::get_env_identifiers(\"barcode\")), override_untrt_controls = NULL ) fit_SE( se, data_type = \"single-agent\", nested_identifiers = NULL, averaged_assay = \"Averaged\", metrics_assay = \"Metrics\", n_point_cutoff = 4, range_conc = c(0.005, 5), force_fit = FALSE, pcutoff = 0.05, cap = 0.1, curve_type = c(\"GR\", \"RV\") ) normalize_SE( se, data_type, nested_identifiers = NULL, nested_confounders = gDRutils::get_SE_identifiers(se, \"barcode\", simplify = TRUE), control_mean_fxn = function(x) { mean(x, trim = 0.25) }, control_assay = \"Controls\", raw_treated_assay = \"RawTreated\", normalized_assay = \"Normalized\", ndigit_rounding = 4 ) create_and_normalize_SE( df_, data_type, readout = \"ReadoutValue\", control_mean_fxn = function(x) { mean(x, trim = 0.25) }, nested_identifiers = NULL, nested_confounders = intersect(names(df_), gDRutils::get_env_identifiers(\"barcode\")), override_untrt_controls = NULL, ndigit_rounding = 4, control_assay = \"Controls\", raw_treated_assay = \"RawTreated\", normalized_assay = \"Normalized\" ) runDrugResponseProcessingPipeline( x, readout = \"ReadoutValue\", control_mean_fxn = function(x) { mean(x, trim = 0.25) }, nested_identifiers_l = NULL, nested_confounders = gDRutils::get_env_identifiers(\"barcode\"), override_untrt_controls = NULL, override_masked = FALSE, ndigit_rounding = 4, n_point_cutoff = 4, control_assay = \"Controls\", raw_treated_assay = \"RawTreated\", normalized_assay = \"Normalized\", averaged_assay = \"Averaged\", metrics_assay = \"Metrics\", split_data = TRUE, data_dir = NULL, partial_run = FALSE, start_from = get_pipeline_steps()[1], selected_experiments = NULL )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/runDrugResponseProcessingPipelineFxns.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Run drug response processing pipeline — average_SE","text":"se SummarizedExperiment object. data_type single-agent vs combination series_identifiers character vector identifiers measured metric define unique data point. override_masked boolean indicating whether override masked wells averaging include wells. Defaults FALSE. normalized_assay string assay name containing normalized data. Defaults \"Normalized\". averaged_assay string name averaged assay SummarizedExperiment. Defaults \"Averaged\". df_ data.table raw drug response data containing treated untreated values. column called \"BackgroundValue\" exists df_, removed readout column. readout string name containing cell viability readout values. nested_identifiers character vector nested_identifiers given SE given data_type nested_confounders Character vector nested_confounders given assay. nested_keys character vector column names include data.tables assays resulting SummarizedExperiment object. Defaults nested_identifiers nested_confounders passed create_and_normalize_SE runDrugResponseProcessingPipeline. override_untrt_controls named list containing defining factors treatments. Defaults NULL. metrics_assay string name metrics assay output returned SummarizedExperiment Defaults \"Metrics\". n_point_cutoff integer many points considered minimum required try fit curve. Defaults 4. range_conc vector concetrations range values. force_fit boolean indicating whether force fit. pcutoff numeric cutoff value. cap numeric value representing value cap highest allowed relative viability . curve_type vector curve type values. control_mean_fxn function indicating average controls. Defaults mean(x, trim = 0.25). control_assay string containing name assay representing controls se. Defaults \"Controls\". raw_treated_assay string containing name assay representing raw treated data se. Defaults \"RawTreated\". ndigit_rounding integer indicating number digits round calculations. Defaults 4. x data.table MAE drug response data nested_identifiers_l list nested_identifiers(character v ectors) single-agent (optionally) combination data split_data boolean indicating whether data provided MultiAssayExperiment split appropriate data types data_dir string path directory intermediate data experiments (qs files). set NULL (default) intermediate data saved/read . partial_run logical flag indicating pipeline run partially (step defined start_from) start_from string indicating pipeline step partial run launched selected_experiments character vector experiments pipeline run. option works pipeline run partially (.e. partial_run flag set TRUE)","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/runDrugResponseProcessingPipelineFxns.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Run drug response processing pipeline — average_SE","text":"MAE object","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/runDrugResponseProcessingPipelineFxns.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Run drug response processing pipeline — average_SE","text":"runDrugResponseProcessingPipeline made 3 separate steps: \"create_and_normalize_SE\" \"average_SE\" \"fit_SE\" create_and_normalize_SE, creates SummarizedExperiment object data.table, data.table contains treatments rows, conditions columns. SummarizedExperiment object containing two asssays created: treated readouts live assay called \"RawTreated\", reference readouts live assay called \"Controls\". Subsequently, treated control elements normalized output two metrics: average_SE, take normalized assay average nested DataFrames across uniquenested_identifiers. fit_SE, take averaged assay fit curves obtain metrics, one set metrics normalization type set. Pipeline can run partially partial_run flag set TRUE. start_from string defines step pipeline launched. However, partial run pipeline possible whole pipeline launched least defined data_dir intermediate data saved qs files data_dir. Pipeline can run selected experiments changing default value selected_experiments param. scenario works partial_run enabled.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/runDrugResponseProcessingPipelineFxns.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Run drug response processing pipeline — average_SE","text":"","code":"d <- rep(seq(0.1, 0.9, 0.1), each = 4) v <- rep(seq(0.1, 0.4, 0.1), 9) df <- S4Vectors::DataFrame( Concentration = d, masked = rep(c(TRUE, TRUE, TRUE, FALSE), 9), normalization_type = rep(c(\"GR\", \"RV\"), length(v) * 2), x = rep(v, 2) ) normalized <- BumpyMatrix::splitAsBumpyMatrix(row = 1, column = 1, x = df) keys <- list(Trt = \"Concentration\", \"masked_tag\" = \"masked\") assays <- list(\"Normalized\" = normalized) se <- SummarizedExperiment::SummarizedExperiment(assays = assays) se <- gDRutils::set_SE_keys(se, keys) se <- gDRutils::set_SE_identifiers(se, gDRutils::get_env_identifiers()) se1 <- average_SE( se, data_type = \"single-agent\", override_masked = FALSE, normalized_assay = \"Normalized\", averaged_assay = \"Averaged\" ) #> Loading required namespace: testthat td <- gDRimport::get_test_data() l_tbl <- gDRimport::load_data( manifest_file = gDRimport::manifest_path(td), df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) #> INFO [2024-12-18 16:03:28] Manifest loaded successfully #> INFO [2024-12-18 16:03:28] Reading Template_7daytreated.xlsx with load_templates_xlsx #> INFO [2024-12-18 16:03:28] Loading Template_7daytreated.xlsx #> INFO [2024-12-18 16:03:29] Loading Template_Untreated.xlsx #> INFO [2024-12-18 16:03:29] Templates loaded successfully! #> INFO [2024-12-18 16:03:29] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:29] Plate 201904190a read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904190b read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904190c read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904190d read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904190e read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904190f read; 384 wells #> INFO [2024-12-18 16:03:29] File done #> INFO [2024-12-18 16:03:29] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:29] Plate 201904197a read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904197b read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904197c read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904197d read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904197e read; 384 wells #> INFO [2024-12-18 16:03:29] Plate 201904197f read; 384 wells #> INFO [2024-12-18 16:03:29] File done imported_data <- merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) #> INFO [2024-12-18 16:03:29] Merging data #> INFO [2024-12-18 16:03:29] Merging the metadata (manifest and treatment files) #> WARN [2024-12-18 16:03:29] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> se <- purrr::quietly(create_SE)(imported_data, data_type = \"single-agent\") td <- gDRimport::get_test_data() l_tbl <- gDRimport::load_data( manifest_file = gDRimport::manifest_path(td), df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) #> INFO [2024-12-18 16:03:29] Manifest loaded successfully #> INFO [2024-12-18 16:03:29] Reading Template_7daytreated.xlsx with load_templates_xlsx #> INFO [2024-12-18 16:03:29] Loading Template_7daytreated.xlsx #> INFO [2024-12-18 16:03:30] Loading Template_Untreated.xlsx #> INFO [2024-12-18 16:03:30] Templates loaded successfully! #> INFO [2024-12-18 16:03:30] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:30] Plate 201904190a read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904190b read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904190c read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904190d read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904190e read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904190f read; 384 wells #> INFO [2024-12-18 16:03:30] File done #> INFO [2024-12-18 16:03:30] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:30] Plate 201904197a read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904197b read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904197c read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904197d read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904197e read; 384 wells #> INFO [2024-12-18 16:03:30] Plate 201904197f read; 384 wells #> INFO [2024-12-18 16:03:30] File done imported_data <- merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) #> INFO [2024-12-18 16:03:30] Merging data #> INFO [2024-12-18 16:03:30] Merging the metadata (manifest and treatment files) #> WARN [2024-12-18 16:03:30] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> inl <- prepare_input(imported_data) #> Warning: 'Plate' nested confounder(s) is/are not present in the data. #> Switching into 'Barcode' nested confounder(s). se <- create_SE( inl$df_list[[\"single-agent\"]], data_type = \"single-agent\", nested_confounders = inl$nested_confounders) #> INFO [2024-12-18 16:03:30] #> INFO [2024-12-18 16:03:30] normalize_SE(se, data_type = \"single-agent\") #> class: SummarizedExperiment #> dim: 3 6 #> metadata(3): identifiers experiment_metadata Keys #> assays(3): RawTreated Controls Normalized #> rownames(3): G00002_drug_002_moa_A_168 G00004_drug_004_moa_A_168 #> G00011_drug_011_moa_B_168 #> rowData names(4): Gnumber DrugName drug_moa Duration #> colnames(6): CL00011_cellline_BA_breast_cellline_BA_unknown_26 #> CL00012_cellline_CA_breast_cellline_CA_unknown_30 ... #> CL00015_cellline_FA_breast_cellline_FA_unknown_42 #> CL00018_cellline_IB_breast_cellline_IB_unknown_54 #> colData names(6): clid CellLineName ... subtype ReferenceDivisionTime p_dir <- file.path(tempdir(), \"pcheck\") dir.create(p_dir) td <- gDRimport::get_test_data() l_tbl <- gDRimport::load_data( manifest_file = gDRimport::manifest_path(td), df_template_files = gDRimport::template_path(td), results_file = gDRimport::result_path(td) ) #> INFO [2024-12-18 16:03:31] Manifest loaded successfully #> INFO [2024-12-18 16:03:31] Reading Template_7daytreated.xlsx with load_templates_xlsx #> INFO [2024-12-18 16:03:31] Loading Template_7daytreated.xlsx #> INFO [2024-12-18 16:03:31] Loading Template_Untreated.xlsx #> INFO [2024-12-18 16:03:31] Templates loaded successfully! #> INFO [2024-12-18 16:03:31] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day0.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:31] Plate 201904190a read; 384 wells #> INFO [2024-12-18 16:03:31] Plate 201904190b read; 384 wells #> INFO [2024-12-18 16:03:31] Plate 201904190c read; 384 wells #> INFO [2024-12-18 16:03:31] Plate 201904190d read; 384 wells #> INFO [2024-12-18 16:03:31] Plate 201904190e read; 384 wells #> INFO [2024-12-18 16:03:31] Plate 201904190f read; 384 wells #> INFO [2024-12-18 16:03:31] File done #> INFO [2024-12-18 16:03:31] Reading file /usr/local/lib/R/site-library/gDRimport/extdata/data1/RawData_day7.xlsx, sheet Readout_0077vs0068_day7 #> New names: #> • `` -> `...1` #> • `` -> `...2` #> • `` -> `...3` #> • `` -> `...4` #> • `` -> `...5` #> • `` -> `...6` #> • `` -> `...7` #> • `` -> `...8` #> • `` -> `...9` #> • `` -> `...10` #> • `` -> `...11` #> • `` -> `...12` #> • `` -> `...13` #> • `` -> `...14` #> • `` -> `...15` #> • `` -> `...16` #> • `` -> `...17` #> • `` -> `...18` #> • `` -> `...19` #> • `` -> `...20` #> • `` -> `...21` #> • `` -> `...22` #> • `` -> `...23` #> • `` -> `...24` #> • `` -> `...25` #> INFO [2024-12-18 16:03:32] Plate 201904197a read; 384 wells #> INFO [2024-12-18 16:03:32] Plate 201904197b read; 384 wells #> INFO [2024-12-18 16:03:32] Plate 201904197c read; 384 wells #> INFO [2024-12-18 16:03:32] Plate 201904197d read; 384 wells #> INFO [2024-12-18 16:03:32] Plate 201904197e read; 384 wells #> INFO [2024-12-18 16:03:32] Plate 201904197f read; 384 wells #> INFO [2024-12-18 16:03:32] File done imported_data <- merge_data( l_tbl$manifest, l_tbl$treatments, l_tbl$data ) #> INFO [2024-12-18 16:03:32] Merging data #> INFO [2024-12-18 16:03:32] Merging the metadata (manifest and treatment files) #> WARN [2024-12-18 16:03:32] 4608 well loaded, 768 wells discarded for lack of annotation, #> 3840 data point selected #> runDrugResponseProcessingPipeline( imported_data, data_dir = p_dir ) #> Warning: 'Plate' nested confounder(s) is/are not present in the data. #> Switching into 'Barcode' nested confounder(s). #> Processing combination #> Warning: mapping original concentration '0.00457247142398638' to '0.00437' #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> mapping original concentration '0.00457247142398638' to '0.00437' #> not enough data points (1 < 4) to perform fitting #> NaNs produced #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> mapping original concentration '0.00457247142398638' to '0.00437' #> not enough data points (1 < 4) to perform fitting #> NaNs produced #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> NaNs produced #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> NaNs produced #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> mapping original concentration '0.00457247142398638' to '0.00437' #> not enough data points (1 < 4) to perform fitting #> NaNs produced #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> mapping original concentration '0.00457247142398638' to '0.00437' #> not enough data points (1 < 4) to perform fitting #> NaNs produced #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitt #> Processing single-agent #> Warning: method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> NaNs produced #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> overriding original x_0 argument '1' with '1.08355555555556' (fit is not statistically significant (p=1.00), setting constant fit) #> overriding original x_0 argument '1' with '1.1' (only 1 normalized value detected, setting constant fit) #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> overriding original x_0 argument '1' with '1.09306666666667' (fit is not statistically significant (p=1.00), setting constant fit) #> overriding original x_0 argument '1' with '1.1' (only 1 normalized value detected, setting constant fit) #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> NaNs produced #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol' #> not enough data points (1 < 4) to perform fitting #> not enough data points (1 < 4) to perform fitting #> A MultiAssayExperiment object of 2 listed #> experiments with user-defined names and respective classes. #> Containing an ExperimentList class object of length 2: #> [1] combination: SummarizedExperiment with 2 rows and 6 columns #> [2] single-agent: SummarizedExperiment with 3 rows and 6 columns #> Functionality: #> experiments() - obtain the ExperimentList instance #> colData() - the primary/phenotype DataFrame #> sampleMap() - the sample coordination DataFrame #> `$`, `[`, `[[` - extract colData columns, subset, or experiment #> *Format() - convert into a long or wide DataFrame #> assays() - convert ExperimentList to a SimpleList of matrices #> exportClass() - save data to flat files"},{"path":"https://gdrplatform.github.io/gDRcore/reference/save_intermediate_data.html","id":null,"dir":"Reference","previous_headings":"","what":"save intermediate data for the given experiment and step to qs file — save_intermediate_data","title":"save intermediate data for the given experiment and step to qs file — save_intermediate_data","text":"save intermediate data given experiment step qs file","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/save_intermediate_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"save intermediate data for the given experiment and step to qs file — save_intermediate_data","text":"","code":"save_intermediate_data(path, step, experiment, se)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/save_intermediate_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"save intermediate data for the given experiment and step to qs file — save_intermediate_data","text":"path string save directory qs file step, string step name experiment string experiment name se output se","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/save_intermediate_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"save intermediate data for the given experiment and step to qs file — save_intermediate_data","text":"NULL","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/split_raw_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Split raw data into list based on the data types — split_raw_data","title":"Split raw data into list based on the data types — split_raw_data","text":"Split raw data list based data types","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/split_raw_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split raw data into list based on the data types — split_raw_data","text":"","code":"split_raw_data(dt, type_col = \"type\")"},{"path":"https://gdrplatform.github.io/gDRcore/reference/split_raw_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split raw data into list based on the data types — split_raw_data","text":"dt data.table raw drug response data containing treated untreated values column specified type_col argument. type_col string column names dt info data type. Defaults \"type\".","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/split_raw_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Split raw data into list based on the data types — split_raw_data","text":"list split data based data type","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/split_raw_data.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Split raw data into list based on the data types — split_raw_data","text":"Bartosz Czech bartosz.czech@contractors.roche.com","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/split_raw_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split raw data into list based on the data types — split_raw_data","text":"","code":"cell_lines <- gDRtestData::create_synthetic_cell_lines() drugs <- gDRtestData::create_synthetic_drugs() dt_layout <- drugs[4:6, as.list(cell_lines[7:8, ]), names(drugs)] dt_layout <- gDRtestData::add_data_replicates(dt_layout) dt_layout <- gDRtestData::add_concentration( dt_layout, concentrations = 10 ^ (seq(-3, .5, .5)) ) dt_2 <- drugs[c(21, 26), as.list(cell_lines[which(cell_lines$clid %in% dt_layout$clid)]), names(drugs)] dt_2 <- gDRtestData::add_data_replicates(dt_2) dt_2 <- gDRtestData::add_concentration( dt_2, concentrations = 10 ^ (seq(-3, .5, .5)) ) colnames(dt_2)[colnames(dt_2) %in% c(colnames(drugs), \"Concentration\")] <- paste0( colnames(dt_2)[colnames(dt_2) %in% c(colnames(drugs), \"Concentration\")], \"_2\" ) dt_layout_2 <- dt_layout[dt_2, on = intersect(names(dt_layout), names(dt_2)), allow.cartesian = TRUE] dt_merged_data <- gDRtestData::generate_response_data(dt_layout_2, 0) dt <- identify_data_type(dt_merged_data) split_raw_data(dt) #> $combination #> Barcode Gnumber DrugName drug_moa clid CellLineName Tissue #> #> 1: plate_1 G00004 drug_004 moa_A CL00016 cellline_GB tissue_y #> 2: plate_1 G00005 drug_005 moa_A CL00016 cellline_GB tissue_y #> 3: plate_1 G00006 drug_006 moa_A CL00016 cellline_GB tissue_y #> 4: plate_1 G00004 drug_004 moa_A CL00016 cellline_GB tissue_y #> 5: plate_1 G00005 drug_005 moa_A CL00016 cellline_GB tissue_y #> --- #> 3596: plate_3 G00026 drug_026 moa_E CL00017 cellline_HB tissue_y #> 3597: plate_3 G00026 drug_026 moa_E CL00017 cellline_HB tissue_y #> 3598: plate_3 G00026 drug_026 moa_E CL00017 cellline_HB tissue_y #> 3599: plate_3 G00026 drug_026 moa_E CL00017 cellline_HB tissue_y #> 3600: plate_3 G00026 drug_026 moa_E CL00017 cellline_HB tissue_y #> ReferenceDivisionTime Concentration Gnumber_2 DrugName_2 drug_moa_2 #> #> 1: 46 0.001000000 G00021 drug_021 moa_D #> 2: 46 0.001000000 G00021 drug_021 moa_D #> 3: 46 0.001000000 G00021 drug_021 moa_D #> 4: 46 0.003162278 G00021 drug_021 moa_D #> 5: 46 0.003162278 G00021 drug_021 moa_D #> --- #> 3596: 50 3.162277660 vehicle vehicle vehicle #> 3597: 50 3.162277660 vehicle vehicle vehicle #> 3598: 50 3.162277660 vehicle vehicle vehicle #> 3599: 50 3.162277660 vehicle vehicle vehicle #> 3600: 50 3.162277660 vehicle vehicle vehicle #> Concentration_2 ReadoutValue BackgroundValue Duration record_id #> #> 1: 0.001 98.29017 0 72 727 #> 2: 0.001 95.09049 0 72 728 #> 3: 0.001 99.79002 0 72 729 #> 4: 0.001 78.78972 0 72 730 #> 5: 0.001 55.22270 0 72 731 #> --- #> 3596: 0.000 100.00000 0 72 3572 #> 3597: 0.000 100.00000 0 72 3573 #> 3598: 0.000 100.00000 0 72 3574 #> 3599: 0.000 100.00000 0 72 3575 #> 3600: 0.000 100.00000 0 72 3576 #> #> $`single-agent` #> Barcode Gnumber DrugName drug_moa clid CellLineName Tissue #> #> 1: plate_1 G00004 drug_004 moa_A CL00016 cellline_GB tissue_y #> 2: plate_1 G00005 drug_005 moa_A CL00016 cellline_GB tissue_y #> 3: plate_1 G00006 drug_006 moa_A CL00016 cellline_GB tissue_y #> 4: plate_1 G00004 drug_004 moa_A CL00016 cellline_GB tissue_y #> 5: plate_1 G00005 drug_005 moa_A CL00016 cellline_GB tissue_y #> --- #> 1292: plate_3 vehicle vehicle vehicle CL00017 cellline_HB tissue_y #> 1293: plate_3 vehicle vehicle vehicle CL00017 cellline_HB tissue_y #> 1294: plate_3 vehicle vehicle vehicle CL00017 cellline_HB tissue_y #> 1295: plate_3 vehicle vehicle vehicle CL00017 cellline_HB tissue_y #> 1296: plate_3 vehicle vehicle vehicle CL00017 cellline_HB tissue_y #> ReferenceDivisionTime Concentration ReadoutValue BackgroundValue Duration #> #> 1: 46 0.001000000 98.29017 0 72 #> 2: 46 0.001000000 95.09049 0 72 #> 3: 46 0.001000000 99.79002 0 72 #> 4: 46 0.003162278 78.78972 0 72 #> 5: 46 0.003162278 55.22270 0 72 #> --- #> 1292: 50 0.000000000 100.00000 0 72 #> 1293: 50 0.000000000 100.00000 0 72 #> 1294: 50 0.000000000 100.00000 0 72 #> 1295: 50 0.000000000 100.00000 0 72 #> 1296: 50 0.000000000 100.00000 0 72 #> record_id #> #> 1: 7 #> 2: 8 #> 3: 9 #> 4: 10 #> 5: 11 #> --- #> 1292: 692 #> 1293: 693 #> 1294: 694 #> 1295: 695 #> 1296: 696 #> conc <- rep(seq(0, 0.3, 0.1), 2) ctrl_dt <- S4Vectors::DataFrame( ReadoutValue = c(2, 2, 1, 1, 2, 1), Concentration = rep(0, 6), masked = FALSE, DrugName = rep(c(\"DRUG_10\", \"vehicle\", \"DRUG_8\"), 2), CellLineName = \"CELL1\" ) trt_dt <- S4Vectors::DataFrame( ReadoutValue = rep(seq(1, 4, 1), 2), Concentration = conc, masked = rep(FALSE, 8), DrugName = c(\"DRUG_10\", \"DRUG_8\"), CellLineName = \"CELL1\" ) input_dt <- data.table::as.data.table(rbind(ctrl_dt, trt_dt)) input_dt$Duration <- 72 input_dt$CorrectedReadout2 <- input_dt$ReadoutValue split_dt <- identify_data_type(input_dt) split_raw_data(split_dt) #> $`single-agent` #> ReadoutValue Concentration masked DrugName CellLineName Duration #> #> 1: 2 0.1 FALSE DRUG_8 CELL1 72 #> 2: 3 0.2 FALSE DRUG_10 CELL1 72 #> 3: 4 0.3 FALSE DRUG_8 CELL1 72 #> 4: 2 0.1 FALSE DRUG_8 CELL1 72 #> 5: 3 0.2 FALSE DRUG_10 CELL1 72 #> 6: 4 0.3 FALSE DRUG_8 CELL1 72 #> 7: 2 0.0 FALSE DRUG_10 CELL1 72 #> 8: 2 0.0 FALSE vehicle CELL1 72 #> 9: 1 0.0 FALSE DRUG_8 CELL1 72 #> 10: 1 0.0 FALSE DRUG_10 CELL1 72 #> 11: 2 0.0 FALSE vehicle CELL1 72 #> 12: 1 0.0 FALSE DRUG_8 CELL1 72 #> 13: 1 0.0 FALSE DRUG_10 CELL1 72 #> 14: 1 0.0 FALSE DRUG_10 CELL1 72 #> CorrectedReadout2 record_id #> #> 1: 2 8 #> 2: 3 9 #> 3: 4 10 #> 4: 2 12 #> 5: 3 13 #> 6: 4 14 #> 7: 2 1 #> 8: 2 2 #> 9: 1 3 #> 10: 1 4 #> 11: 2 5 #> 12: 1 6 #> 13: 1 7 #> 14: 1 11 #>"},{"path":"https://gdrplatform.github.io/gDRcore/reference/test_synthetic_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Testing synthetic data form gDRtestData package — test_synthetic_data","title":"Testing synthetic data form gDRtestData package — test_synthetic_data","text":"Testing synthetic data form gDRtestData package","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/test_synthetic_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Testing synthetic data form gDRtestData package — test_synthetic_data","text":"","code":"test_synthetic_data( original, data, dataName, override_untrt_controls = NULL, assays = c(\"Normalized\", \"Averaged\", \"Metrics\"), tolerance = 0.001 )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/test_synthetic_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Testing synthetic data form gDRtestData package — test_synthetic_data","text":"original original MAE assay data datase MAE data.table dataName dataset name override_untrt_controls named list containing defining factors treatments assays assays test tolerance tolerance factor","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/test_synthetic_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Testing synthetic data form gDRtestData package — test_synthetic_data","text":"NULL","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/test_synthetic_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Testing synthetic data form gDRtestData package — test_synthetic_data","text":"","code":"set.seed(2) cell_lines <- gDRtestData::create_synthetic_cell_lines() drugs <- gDRtestData::create_synthetic_drugs() data <- \"finalMAE_small\" original <- gDRutils::get_synthetic_data(data) test_synthetic_data(original, original, \"test\") #> Test passed 🥇 #> Test passed 🎊 #> Test passed 🎉"},{"path":"https://gdrplatform.github.io/gDRcore/reference/validate_data_models_availability.html","id":null,"dir":"Reference","previous_headings":"","what":"Validate availability of data models — validate_data_models_availability","title":"Validate availability of data models — validate_data_models_availability","text":"Validate availability data models","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/validate_data_models_availability.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Validate availability of data models — validate_data_models_availability","text":"","code":"validate_data_models_availability(d_types, s_d_models)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/validate_data_models_availability.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Validate availability of data models — validate_data_models_availability","text":"d_types character vector experiment names MultiAssayExperiment object s_d_models character vector names supported experiment","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-153---2024-12-18","dir":"Changelog","previous_headings":"","what":"gDRcore 1.5.3 - 2024-12-18","title":"gDRcore 1.5.3 - 2024-12-18","text":"fix melt error changed intersect behaviour","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-152---2024-11-15","dir":"Changelog","previous_headings":"","what":"gDRcore 1.5.2 - 2024-11-15","title":"gDRcore 1.5.2 - 2024-11-15","text":"fix melt annotation function fix Bioc error","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-151---2024-11-05","dir":"Changelog","previous_headings":"","what":"gDRcore 1.5.1 - 2024-11-05","title":"gDRcore 1.5.1 - 2024-11-05","text":"synchronize Bioconductor GitHub versioning","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1315---2024-10-30","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.15 - 2024-10-30","title":"gDRcore 1.3.15 - 2024-10-30","text":"hot fix annotation colnames cell lines","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1314---2024-10-24","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.14 - 2024-10-24","title":"gDRcore 1.3.14 - 2024-10-24","text":"split refactor annotation functions","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1313---2024-10-21","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.13 - 2024-10-21","title":"gDRcore 1.3.13 - 2024-10-21","text":"add support reprocessing data old data model","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1312---2024-09-30","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.12 - 2024-09-30","title":"gDRcore 1.3.12 - 2024-09-30","text":"handle properly additional perturbations get rid creating additional columns can’t hangle properly app","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1311---2024-08-21","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.11 - 2024-08-21","title":"gDRcore 1.3.11 - 2024-08-21","text":"identify additional perturbations hidden secondary drug","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1310---2024-08-19","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.10 - 2024-08-19","title":"gDRcore 1.3.10 - 2024-08-19","text":"utilize calc_sd function","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-139---2024-08-09","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.9 - 2024-08-09","title":"gDRcore 1.3.9 - 2024-08-09","text":"fix issue wrong mapping Day0 data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-138---2024-08-08","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.8 - 2024-08-08","title":"gDRcore 1.3.8 - 2024-08-08","text":"fix issue mapping overrides untreated controls","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-137---2024-08-05","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.7 - 2024-08-05","title":"gDRcore 1.3.7 - 2024-08-05","text":"fix issue non-avearaged concentration data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-136---2024-07-23","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.6 - 2024-07-23","title":"gDRcore 1.3.6 - 2024-07-23","text":"fix issue providing empty nested_confounder","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-135---2024-07-17","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.5 - 2024-07-17","title":"gDRcore 1.3.5 - 2024-07-17","text":"allow using custom functions calculating HSA Bliss scores combination data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-134---2024-07-15","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.4 - 2024-07-15","title":"gDRcore 1.3.4 - 2024-07-15","text":"refactor logic calculating standard deviation single values","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-133---2024-07-10","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.3 - 2024-07-10","title":"gDRcore 1.3.3 - 2024-07-10","text":"update unit tests","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-132---2024-06-04","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.2 - 2024-06-04","title":"gDRcore 1.3.2 - 2024-06-04","text":"switch get_supported_experiments","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-131---2024-05-27","dir":"Changelog","previous_headings":"","what":"gDRcore 1.3.1 - 2024-05-27","title":"gDRcore 1.3.1 - 2024-05-27","text":"synchronize Bioconductor GitHub versioning","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1122---2024-05-16","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.22 - 2024-05-16","title":"gDRcore 1.1.22 - 2024-05-16","text":"move define_matrix_grid_positions round_concentration functions gDRutils package","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1121---2024-05-13","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.21 - 2024-05-13","title":"gDRcore 1.1.21 - 2024-05-13","text":"add functions retrieving annotation data input dt","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1120---2024-05-08","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.20 - 2024-05-08","title":"gDRcore 1.1.20 - 2024-05-08","text":"fix typo","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1119---2024-04-23","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.19 - 2024-04-23","title":"gDRcore 1.1.19 - 2024-04-23","text":"add vignette documentation data annotation","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1118---2024-04-22","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.18 - 2024-04-22","title":"gDRcore 1.1.18 - 2024-04-22","text":"add support external annotation specified env var","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1117---2024-03-26","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.17 - 2024-03-26","title":"gDRcore 1.1.17 - 2024-03-26","text":"fix bug converting mae raw_data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1116---2024-03-15","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.16 - 2024-03-15","title":"gDRcore 1.1.16 - 2024-03-15","text":"remove unstable tests","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1115---2024-03-14","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.15 - 2024-03-14","title":"gDRcore 1.1.15 - 2024-03-14","text":"cleanup package","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1114---2024-03-12","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.14 - 2024-03-12","title":"gDRcore 1.1.14 - 2024-03-12","text":"update function description","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1113---2024-02-26","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.13 - 2024-02-26","title":"gDRcore 1.1.13 - 2024-02-26","text":"improved references valid NEWS.md","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1112---2024-02-14","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.12 - 2024-02-14","title":"gDRcore 1.1.12 - 2024-02-14","text":"fix issue retrieving unique records mix control treated samples","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1111---2024-02-14","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.11 - 2024-02-14","title":"gDRcore 1.1.11 - 2024-02-14","text":"make documentation compatible pkdgdown rename ‘matches’ ‘grr_matches’","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-1110---2024-02-12","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.10 - 2024-02-12","title":"gDRcore 1.1.10 - 2024-02-12","text":"fix unit tests GRAN","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-119---2024-02-07","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.9 - 2024-02-07","title":"gDRcore 1.1.9 - 2024-02-07","text":"simplify logic assays combination data rename matrix combination","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-118---2024-02-06","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.8 - 2024-02-06","title":"gDRcore 1.1.8 - 2024-02-06","text":"add support internal source annotation","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-117---2024-02-06","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.7 - 2024-02-06","title":"gDRcore 1.1.7 - 2024-02-06","text":"fix bug converting standardize MAE raw data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-116---2024-02-05","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.6 - 2024-02-05","title":"gDRcore 1.1.6 - 2024-02-05","text":"add vignette data model","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-115---2024-02-01","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.5 - 2024-02-01","title":"gDRcore 1.1.5 - 2024-02-01","text":"update wrappers co-dilution data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-114---2024-01-22","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.4 - 2024-01-22","title":"gDRcore 1.1.4 - 2024-01-22","text":"add new description fields","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-113---2024-01-04","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.3 - 2024-01-04","title":"gDRcore 1.1.3 - 2024-01-04","text":"improve logic normalization identification single-agent matrix data Drug3","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-112---2023-12-15","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.2 - 2023-12-15","title":"gDRcore 1.1.2 - 2023-12-15","text":"fix issue wrong assignment untreated records","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-111---2023-11-22","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.1 - 2023-11-22","title":"gDRcore 1.1.1 - 2023-11-22","text":"sync master devel branch add support unifying duplicates combo matrix data add “Treatment” template identifier","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-110---2023-10-24","dir":"Changelog","previous_headings":"","what":"gDRcore 1.1.0 - 2023-10-24","title":"gDRcore 1.1.0 - 2023-10-24","text":"release Bioc 3.18","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-100---2023-10-24","dir":"Changelog","previous_headings":"","what":"gDRcore 1.0.0 - 2023-10-24","title":"gDRcore 1.0.0 - 2023-10-24","text":"prerelease Bioc 3.18","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09943---2023-10-17","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.43 - 2023-10-17","title":"gDRcore 0.99.43 - 2023-10-17","text":"adjust NEWS Bioc format","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09942---2023-10-05","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.42 - 2023-10-05","title":"gDRcore 0.99.42 - 2023-10-05","text":"bump version gDRtestData fix bug merging controls triple combo additional perturbations","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09941---2023-09-25","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.41 - 2023-09-25","title":"gDRcore 0.99.41 - 2023-09-25","text":"add support adding custom annotations inside input files improve performance","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09940---2023-09-25","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.40 - 2023-09-25","title":"gDRcore 0.99.40 - 2023-09-25","text":"fix bug subsetting wrong combo matrix value","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09939---2023-09-19","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.39 - 2023-09-19","title":"gDRcore 0.99.39 - 2023-09-19","text":"extend logic matching missing controls","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09938---2023-09-12","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.38 - 2023-09-12","title":"gDRcore 0.99.38 - 2023-09-12","text":"set Drug3 official tertiary drug experiment","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09937---2023-09-04","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.37 - 2023-09-04","title":"gDRcore 0.99.37 - 2023-09-04","text":"fill NA average values match plate","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09936---2023-09-01","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.36 - 2023-09-01","title":"gDRcore 0.99.36 - 2023-09-01","text":"fill NA aggregation ref trt data mean","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09935---2023-08-17","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.35 - 2023-08-17","title":"gDRcore 0.99.35 - 2023-08-17","text":"fix issue missing subsetting Day0 data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09934---2023-08-16","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.34 - 2023-08-16","title":"gDRcore 0.99.34 - 2023-08-16","text":"update logic supporting manifest template files sharing column","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09933---2023-08-10","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.33 - 2023-08-10","title":"gDRcore 0.99.33 - 2023-08-10","text":"update annotation column names cell line annotation per changes gDRutils","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09932---2023-07-25","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.32 - 2023-07-25","title":"gDRcore 0.99.32 - 2023-07-25","text":"extend logic supporting cols dash, e.g. additional perturbations “-”","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09931---2023-07-19","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.31 - 2023-07-19","title":"gDRcore 0.99.31 - 2023-07-19","text":"update logic handling warnings pipeline","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09930---2023-07-13","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.30 - 2023-07-13","title":"gDRcore 0.99.30 - 2023-07-13","text":"fix issue wrong merging data.tables without nested confounders","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09929---2023-07-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.29 - 2023-07-07","title":"gDRcore 0.99.29 - 2023-07-07","text":"add information source type cases without metric data refactor logic splitting raw data metadata - get rid iterative approach","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09928---2023-07-05","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.28 - 2023-07-05","title":"gDRcore 0.99.28 - 2023-07-05","text":"update logic parallel computing","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09927---2023-06-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.27 - 2023-06-29","title":"gDRcore 0.99.27 - 2023-06-29","text":"optimize unit tests","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09926---2023-06-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.26 - 2023-06-29","title":"gDRcore 0.99.26 - 2023-06-29","text":"remove backward compatibility old data model","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09925---2023-06-27","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.25 - 2023-06-27","title":"gDRcore 0.99.25 - 2023-06-27","text":"fix bug missing rownames normalized assay","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09924---2023-06-19","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.24 - 2023-06-19","title":"gDRcore 0.99.24 - 2023-06-19","text":"update logic merging data.table objects","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09923---2023-06-13","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.23 - 2023-06-13","title":"gDRcore 0.99.23 - 2023-06-13","text":"replace order data.table::setorder","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09922---2023-06-09","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.22 - 2023-06-09","title":"gDRcore 0.99.22 - 2023-06-09","text":"switch merge [[ data.table objects","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09921---2023-06-06","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.21 - 2023-06-06","title":"gDRcore 0.99.21 - 2023-06-06","text":"switch aggregate data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09920---2023-06-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.20 - 2023-06-07","title":"gDRcore 0.99.20 - 2023-06-07","text":"switch zoo::rollmean data.table::frollmean","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09919---2023-06-06","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.19 - 2023-06-06","title":"gDRcore 0.99.19 - 2023-06-06","text":"replace reshape2 functions functions data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09918---2023-05-31","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.18 - 2023-05-31","title":"gDRcore 0.99.18 - 2023-05-31","text":"fix managing mixed types raw data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09917---2023-05-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.17 - 2023-05-29","title":"gDRcore 0.99.17 - 2023-05-29","text":"fix bug subsetting data calculating isobologram","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09916---2023-05-22","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.16 - 2023-05-22","title":"gDRcore 0.99.16 - 2023-05-22","text":"format vignette BiocStyle","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09915---2023-05-16","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.15 - 2023-05-16","title":"gDRcore 0.99.15 - 2023-05-16","text":"fix related data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09914---2023-05-15","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.14 - 2023-05-15","title":"gDRcore 0.99.14 - 2023-05-15","text":"rename excess x unify colnames assay data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09913---2023-05-10","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.13 - 2023-05-10","title":"gDRcore 0.99.13 - 2023-05-10","text":"refactor normalization_types combo-specific assays","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09912---2023-05-09","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.12 - 2023-05-09","title":"gDRcore 0.99.12 - 2023-05-09","text":"utilize gDRutils::apply_bumpy_function fit_SE","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09911---2023-05-05","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.11 - 2023-05-05","title":"gDRcore 0.99.11 - 2023-05-05","text":"fix bug swapping untreated/vehicle values","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-09910---2023-05-04","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.10 - 2023-05-04","title":"gDRcore 0.99.10 - 2023-05-04","text":"fix bug data.table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0999---2023-04-21","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.9 - 2023-04-21","title":"gDRcore 0.99.9 - 2023-04-21","text":"utilize gDRutils::apply_bumpy_function average_SE","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0998---2023-04-20","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.8 - 2023-04-20","title":"gDRcore 0.99.8 - 2023-04-20","text":"switch OSI license","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0997---2023-04-19","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.7 - 2023-04-19","title":"gDRcore 0.99.7 - 2023-04-19","text":"fix bug replacing vehicle untreated values","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0996---2023-04-19","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.6 - 2023-04-19","title":"gDRcore 0.99.6 - 2023-04-19","text":"moved wrapper fuctions gDRtestData","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0995---2023-04-18","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.5 - 2023-04-18","title":"gDRcore 0.99.5 - 2023-04-18","text":"update dependencies add fix bioc-devel - correct sorting merge test","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0994---2023-04-17","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.4 - 2023-04-17","title":"gDRcore 0.99.4 - 2023-04-17","text":"fix namespacing issue examples add R 4.2 dependency fix examples normalize_SE","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0993---2023-04-12","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.3 - 2023-04-12","title":"gDRcore 0.99.3 - 2023-04-12","text":"add logic retrieving raw data assay data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0992---2023-04-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.2 - 2023-04-07","title":"gDRcore 0.99.2 - 2023-04-07","text":"update maintainer","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0991---2023-04-04","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.1 - 2023-04-04","title":"gDRcore 0.99.1 - 2023-04-04","text":"bugfix logic ‘cleanup_metadata’","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0990---2023-03-24","dir":"Changelog","previous_headings":"","what":"gDRcore 0.99.0 - 2023-03-24","title":"gDRcore 0.99.0 - 2023-03-24","text":"make package Bioc-compatible","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01322---2023-03-21","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.22 - 2023-03-21","title":"gDRcore 0.1.3.22 - 2023-03-21","text":"improve performance ‘map_df’ refactored logic exact matches","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01321---2023-03-15","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.21 - 2023-03-15","title":"gDRcore 0.1.3.21 - 2023-03-15","text":"refactor pipeline","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01320---2023-03-09","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.20 - 2023-03-09","title":"gDRcore 0.1.3.20 - 2023-03-09","text":"address co-treatment fit using matrix data type instead","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01319---2023-03-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.19 - 2023-03-07","title":"gDRcore 0.1.3.19 - 2023-03-07","text":"add support splitting normalization types","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01318---2023-03-06","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.18 - 2023-03-06","title":"gDRcore 0.1.3.18 - 2023-03-06","text":"improve logic functions used generate isobolograms’ data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01317---2023-03-06","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.17 - 2023-03-06","title":"gDRcore 0.1.3.17 - 2023-03-06","text":"remove obsolete code","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01316---2023-02-21","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.16 - 2023-02-21","title":"gDRcore 0.1.3.16 - 2023-02-21","text":"add support partial pipeline runs","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01315---2023-02-10","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.15 - 2023-02-10","title":"gDRcore 0.1.3.15 - 2023-02-10","text":"update path annotation data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01314---2023-02-10","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.14 - 2023-02-10","title":"gDRcore 0.1.3.14 - 2023-02-10","text":"clean-code","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01313---2023-01-13","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.13 - 2023-01-13","title":"gDRcore 0.1.3.13 - 2023-01-13","text":"clean-code","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01312---2023-01-12","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.12 - 2023-01-12","title":"gDRcore 0.1.3.12 - 2023-01-12","text":"refactor mapping function properly handle drug3","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01311---2022-12-16","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.11 - 2022-12-16","title":"gDRcore 0.1.3.11 - 2022-12-16","text":"replace parallelize function gDRutils::loop","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01310---2022-12-15","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.10 - 2022-12-15","title":"gDRcore 0.1.3.10 - 2022-12-15","text":"add assert vehicle values input data runDrugResponseProcessingPipeline","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0139---2022-12-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.9 - 2022-12-14","title":"gDRcore 0.1.3.9 - 2022-12-14","text":"fix error-handling conditions average_SE","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0138---2022-11-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.8 - 2022-11-07","title":"gDRcore 0.1.3.8 - 2022-11-07","text":"fix invalid encapsulation tests","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0137---2022-10-18","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.7 - 2022-10-18","title":"gDRcore 0.1.3.7 - 2022-10-18","text":"add missing namespacing","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0136---2022-10-10","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.6 - 2022-10-10","title":"gDRcore 0.1.3.6 - 2022-10-10","text":"add support setting number cores BiocParallel based env variable","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0135---2022-10-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.5 - 2022-10-07","title":"gDRcore 0.1.3.5 - 2022-10-07","text":"remove global parameters BiocParallel","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0134---2022-09-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.4 - 2022-09-29","title":"gDRcore 0.1.3.4 - 2022-09-29","text":"change logic using cores BiocParallel","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0133---2022-09-27","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.3 - 2022-09-27","title":"gDRcore 0.1.3.3 - 2022-09-27","text":"update logic parallel computing","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0132---2022-08-17","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.2 - 2022-08-17","title":"gDRcore 0.1.3.2 - 2022-08-17","text":"update logic default nested_confounders create_SE function","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0131---2022-07-08","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.1 - 2022-07-08","title":"gDRcore 0.1.3.1 - 2022-07-08","text":"refactor create_SE support reverse single-agent data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0130---2022-06-02","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.3.0 - 2022-06-02","title":"gDRcore 0.1.3.0 - 2022-06-02","text":"release 1.3.0","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01139---2022-05-30","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.39 - 2022-05-30","title":"gDRcore 0.1.1.39 - 2022-05-30","text":"add missing namespace get_env_identifiers","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01138---2022-05-09","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.38 - 2022-05-09","title":"gDRcore 0.1.1.38 - 2022-05-09","text":"replace NA 0 Concentration loaded manifest file","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01137---2022-05-06","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.37 - 2022-05-06","title":"gDRcore 0.1.1.37 - 2022-05-06","text":"switch data.table data.frame add_annotation* functions","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01136---2022-04-12","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.36 - 2022-04-12","title":"gDRcore 0.1.1.36 - 2022-04-12","text":"update function adding unknown cell line annotations update logic using nested confounders remove grr dependencies","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01135---2022-04-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.35 - 2022-04-07","title":"gDRcore 0.1.1.35 - 2022-04-07","text":"get rid gDRwrapper","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01134---2022-03-30","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.34 - 2022-03-30","title":"gDRcore 0.1.1.34 - 2022-03-30","text":"add support additional barcode identifiers","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01133---2022-03-18","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.33 - 2022-03-18","title":"gDRcore 0.1.1.33 - 2022-03-18","text":"fix documentation calculate_matrix_metric","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01132---2022-03-17","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.32 - 2022-03-17","title":"gDRcore 0.1.1.32 - 2022-03-17","text":"switch catchr purrr","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01131---2022-03-02","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.31 - 2022-03-02","title":"gDRcore 0.1.1.31 - 2022-03-02","text":"fix mapping reference values inverted treatments remove duplication single-agent data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01130---2022-02-17","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.30 - 2022-02-17","title":"gDRcore 0.1.1.30 - 2022-02-17","text":"wrap SE MAE level runDrugResponseProcessingPipeline","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01129---2022-02-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.29 - 2022-02-14","title":"gDRcore 0.1.1.29 - 2022-02-14","text":"change identifier drugname drug_name","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01128---2022-02-09","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.28 - 2022-02-09","title":"gDRcore 0.1.1.28 - 2022-02-09","text":"switch gDRinternal gDRinternalData internal annotations","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01127---2022-02-08","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.27 - 2022-02-08","title":"gDRcore 0.1.1.27 - 2022-02-08","text":"issue subsetting list R 4.2.0","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01126---2022-02-02","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.26 - 2022-02-02","title":"gDRcore 0.1.1.26 - 2022-02-02","text":"unlist output intersect per R 4.2.0","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01125---2022-01-31","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.25 - 2022-01-31","title":"gDRcore 0.1.1.25 - 2022-01-31","text":"align version criteria dependencies.yaml DESCRIPTION package versions","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01124---2022-01-25","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.24 - 2022-01-25","title":"gDRcore 0.1.1.24 - 2022-01-25","text":"standardize/improve CI","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01123---2022-01-24","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.23 - 2022-01-24","title":"gDRcore 0.1.1.23 - 2022-01-24","text":"switch cores variable detect_cores- function","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01122---2022-01-24","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.22 - 2022-01-24","title":"gDRcore 0.1.1.22 - 2022-01-24","text":"fix wrong type NUM_CORES env variable","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01121---2022-01-03","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.21 - 2022-01-03","title":"gDRcore 0.1.1.21 - 2022-01-03","text":"speed-functions mapping treated untreated cases","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01120---2021-12-30","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.20 - 2021-12-30","title":"gDRcore 0.1.1.20 - 2021-12-30","text":"fix linter issues","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01119---2021-12-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.19 - 2021-12-14","title":"gDRcore 0.1.1.19 - 2021-12-14","text":"use parallel computing alternative loops","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01118---2021-12-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.18 - 2021-12-07","title":"gDRcore 0.1.1.18 - 2021-12-07","text":"update annotation script per new csv annotation files","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01117---2021-12-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.17 - 2021-12-07","title":"gDRcore 0.1.1.17 - 2021-12-07","text":"detect co-trt data treat single-agent","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01116---2021-11-08","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.16 - 2021-11-08","title":"gDRcore 0.1.1.16 - 2021-11-08","text":"set excess = NA single-agent","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01115---2021-10-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.15 - 2021-10-29","title":"gDRcore 0.1.1.15 - 2021-10-29","text":"solve rounding issues add new bliss metric","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01114---2021-10-25","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.14 - 2021-10-25","title":"gDRcore 0.1.1.14 - 2021-10-25","text":"refactor isobolograms","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01113---2021-10-25","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.13 - 2021-10-25","title":"gDRcore 0.1.1.13 - 2021-10-25","text":"move p_trt_keys proper place","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01112---2021-10-20","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.12 - 2021-10-20","title":"gDRcore 0.1.1.12 - 2021-10-20","text":"add support masked data fit_SE.combinations.R","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01111---2021-10-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.11 - 2021-10-14","title":"gDRcore 0.1.1.11 - 2021-10-14","text":"address issues creating SE combo matrix experiments","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-01110---2021-10-13","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.10 - 2021-10-13","title":"gDRcore 0.1.1.10 - 2021-10-13","text":"refactor logic calculation Loewe Concentration == 0","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0119---2021-10-12","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.9 - 2021-10-12","title":"gDRcore 0.1.1.9 - 2021-10-12","text":"refactor logic combo data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0118---2021-09-27","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.8 - 2021-09-27","title":"gDRcore 0.1.1.8 - 2021-09-27","text":"updated normalization_types ‘calculate_combo_matrix’ ‘fit_SE’","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0117---2021-09-21","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.7 - 2021-09-21","title":"gDRcore 0.1.1.7 - 2021-09-21","text":"calculate_GR_value removing cl_name param","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0116---2021-08-25","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.6 - 2021-08-25","title":"gDRcore 0.1.1.6 - 2021-08-25","text":"fix missing nested_identifiers variables creating DataFrame masked values","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0115---2021-08-04","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.5 - 2021-08-04","title":"gDRcore 0.1.1.5 - 2021-08-04","text":"refactor reading annotations add default parameters","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0114---2021-07-30","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.4 - 2021-07-30","title":"gDRcore 0.1.1.4 - 2021-07-30","text":"fix bug nested_confounders present ref_df","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0113---2021-07-27","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.3 - 2021-07-27","title":"gDRcore 0.1.1.3 - 2021-07-27","text":"add support nested_identifiers nested_confounders","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0112---2021-07-23","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.1.2 - 2021-07-23","title":"gDRcore 0.1.1.2 - 2021-07-23","text":"remove obsolete dependencies DESCRIPTION:Imports","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0109---2021-07-01","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.9 - 2021-07-01","title":"gDRcore 0.1.0.9 - 2021-07-01","text":"function testing synthetic data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0108---2021-06-25","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.8 - 2021-06-25","title":"gDRcore 0.1.0.8 - 2021-06-25","text":"move functions importing template files gDRimport package","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0107---2021-06-23","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.7 - 2021-06-23","title":"gDRcore 0.1.0.7 - 2021-06-23","text":"add linter remove obsolete functions test.utils.R","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0106---2021-06-22","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.6 - 2021-06-22","title":"gDRcore 0.1.0.6 - 2021-06-22","text":"move importing functions gDRimport package","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0105---2021-06-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.5 - 2021-06-14","title":"gDRcore 0.1.0.5 - 2021-06-14","text":"add unit tests synthetic data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0104---2021-06-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.4 - 2021-06-14","title":"gDRcore 0.1.0.4 - 2021-06-14","text":"remove deprecated functions unit tests","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0103---2021-06-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.3 - 2021-06-14","title":"gDRcore 0.1.0.3 - 2021-06-14","text":"update namespace ‘metadata-’","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0102---2021-06-10","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.2 - 2021-06-10","title":"gDRcore 0.1.0.2 - 2021-06-10","text":"change package name - gDR => gDRcore","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0101---2021-06-04","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.1 - 2021-06-04","title":"gDRcore 0.1.0.1 - 2021-06-04","text":"export/update docs ‘standardize_record_values’","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-0100---2021-06-02","dir":"Changelog","previous_headings":"","what":"gDRcore 0.1.0.0 - 2021-06-02","title":"gDRcore 0.1.0.0 - 2021-06-02","text":"release 1.0.0","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00152---2021-04-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.52 - 2021-04-29","title":"gDRcore 0.0.1.52 - 2021-04-29","text":"remove gDRinternal-related files","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00151---2021-04-27","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.51 - 2021-04-27","title":"gDRcore 0.0.1.51 - 2021-04-27","text":"fix wrong argument name fit_curves","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00150---2021-04-23","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.50 - 2021-04-23","title":"gDRcore 0.0.1.50 - 2021-04-23","text":"ensure dts assay- se,\"Averaged\" NULL treatments","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00149---2021-04-20","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.49 - 2021-04-20","title":"gDRcore 0.0.1.49 - 2021-04-20","text":"add processing info metadata SE","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00148---2021-04-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.48 - 2021-04-14","title":"gDRcore 0.0.1.48 - 2021-04-14","text":"improve handling nested_keys override_controls","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00147---2021-04-09","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.47 - 2021-04-09","title":"gDRcore 0.0.1.47 - 2021-04-09","text":"get rid sorting index columns getMetaData","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00146---2021-03-31","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.46 - 2021-03-31","title":"gDRcore 0.0.1.46 - 2021-03-31","text":"move SE metadata getters setters gDRutils","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00145---2021-03-31","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.45 - 2021-03-31","title":"gDRcore 0.0.1.45 - 2021-03-31","text":"fix bug map_df function","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00144---2021-03-26","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.44 - 2021-03-26","title":"gDRcore 0.0.1.44 - 2021-03-26","text":"refactor processing functions create_SE2, normalize_SE2, average_SE2, fit_SE2 friends","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00143---2021-02-22","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.43 - 2021-02-22","title":"gDRcore 0.0.1.43 - 2021-02-22","text":"add drug_moa_2 merged df","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00142---2021-02-17","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.42 - 2021-02-17","title":"gDRcore 0.0.1.42 - 2021-02-17","text":"fix bug adding annotation codrugs","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00141---2021-02-04","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.41 - 2021-02-04","title":"gDRcore 0.0.1.41 - 2021-02-04","text":"add script benchmarking [normalize/average/metrics]-SE functions","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00140---2021-02-02","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.40 - 2021-02-02","title":"gDRcore 0.0.1.40 - 2021-02-02","text":"fix unit tests include discard keys info getMetaData rowData","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00139---2021-01-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.39 - 2021-01-29","title":"gDRcore 0.0.1.39 - 2021-01-29","text":"utilize refactored renamed fitting function RVGRfit fit_curves","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00138---2021-01-27","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.38 - 2021-01-27","title":"gDRcore 0.0.1.38 - 2021-01-27","text":"export functions use gDRutils","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00137---2021-01-20","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.37 - 2021-01-20","title":"gDRcore 0.0.1.37 - 2021-01-20","text":"move df_to_assay df_to_bm_assay gDRutils","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00136---2021-01-18","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.36 - 2021-01-18","title":"gDRcore 0.0.1.36 - 2021-01-18","text":"updated rowData colData SE additional columns","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00135---2021-01-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.35 - 2021-01-14","title":"gDRcore 0.0.1.35 - 2021-01-14","text":"update positional header calls explicit identifier calls minor changes comply gDRstyle minor changes use identifiers hard coded DrugName requirements","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00134---2021-01-12","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.34 - 2021-01-12","title":"gDRcore 0.0.1.34 - 2021-01-12","text":"update scripts related annotation drugs cell lines","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00133---2021-01-05","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.33 - 2021-01-05","title":"gDRcore 0.0.1.33 - 2021-01-05","text":"anonymize test data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00132---2020-12-24","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.32 - 2020-12-24","title":"gDRcore 0.0.1.32 - 2020-12-24","text":"switch GeneDataScreenR gDRinternal QCS gDR functions","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00131---2020-12-22","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.31 - 2020-12-22","title":"gDRcore 0.0.1.31 - 2020-12-22","text":"make createSE returning assays ‘BumpyMatrix’ objects - previously ‘matrix’ objects add df_to_bm_assay function - returning BumpyMatrix object raw experiment data add initial tests createSE function","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00130---2020-12-21","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.30 - 2020-12-21","title":"gDRcore 0.0.1.30 - 2020-12-21","text":"minor clean-","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00129---2020-12-15","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.29 - 2020-12-15","title":"gDRcore 0.0.1.29 - 2020-12-15","text":"remove dplyr use latest version gDRutils","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00128---2020-12-07","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.28 - 2020-12-07","title":"gDRcore 0.0.1.28 - 2020-12-07","text":"error messages","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00127---2020-12-02","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.27 - 2020-12-02","title":"gDRcore 0.0.1.27 - 2020-12-02","text":"refactor analyze_data.R taking account codilution combo","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00126---2020-11-24","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.26 - 2020-11-24","title":"gDRcore 0.0.1.26 - 2020-11-24","text":"bug reading raw data","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00125---2020-11-08","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.25 - 2020-11-08","title":"gDRcore 0.0.1.25 - 2020-11-08","text":"clean-repository duplicated functions","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00125---2020-11-06","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.25 - 2020-11-06","title":"gDRcore 0.0.1.25 - 2020-11-06","text":"switch R 4.0","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00124---2020-10-01","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.24 - 2020-10-01","title":"gDRcore 0.0.1.24 - 2020-10-01","text":"bugs function metrics calculation per QCS dataset QCS data scripts processing pushing QCS data Rosalind","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00123---2020-09-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.23 - 2020-09-29","title":"gDRcore 0.0.1.23 - 2020-09-29","text":"updated README.md","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00122---2020-09-22","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.22 - 2020-09-22","title":"gDRcore 0.0.1.22 - 2020-09-22","text":"bug update_experiment_metadata","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00121---2020-09-03","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.21 - 2020-09-03","title":"gDRcore 0.0.1.21 - 2020-09-03","text":"logic per new db model","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00120---2020-08-26","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.20 - 2020-08-26","title":"gDRcore 0.0.1.20 - 2020-08-26","text":"RDS files GDS data - GDS5, GDS6, GDS7","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00119---2020-08-03","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.19 - 2020-08-03","title":"gDRcore 0.0.1.19 - 2020-08-03","text":"including masked field able remove masked data averages add function annotate drug combinations - add_codrug_group update tests contained combination experiments accordingly. add new tests GDS data minor refactor use ‘masked’ column. part initial dataframe added automatically - set FALSE","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00118---2020-07-29","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.18 - 2020-07-29","title":"gDRcore 0.0.1.18 - 2020-07-29","text":"fixed issue update_experiment_metadata.R unit test update_experiment_metadata.R","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00117---2020-07-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.17 - 2020-07-14","title":"gDRcore 0.0.1.17 - 2020-07-14","text":"function updating metadata SE","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00116---2020-07-14","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.16 - 2020-07-14","title":"gDRcore 0.0.1.16 - 2020-07-14","text":"dependencies: kcloak, gDRwrapper","code":""},{"path":"https://gdrplatform.github.io/gDRcore/news/index.html","id":"gdrcore-00115---2020-07-08","dir":"Changelog","previous_headings":"","what":"gDRcore 0.0.1.15 - 2020-07-08","title":"gDRcore 0.0.1.15 - 2020-07-08","text":"dependencies","code":""}] +[{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/PULL_REQUEST_TEMPLATE.html","id":"what-changed","dir":"","previous_headings":"","what":"What changed?","title":"Description","text":"Related JIRA issue:","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/PULL_REQUEST_TEMPLATE.html","id":"checklist-for-sustainable-code-base","dir":"","previous_headings":"","what":"Checklist for sustainable code base","title":"Description","text":"added tests code changed/added added documentation code changed/added made sure naming new functions self-explanatory consistent","code":""},{"path":"https://gdrplatform.github.io/gDRcore/PULL_REQUEST_TEMPLATE.html","id":"logistic-checklist","dir":"","previous_headings":"","what":"Logistic checklist","title":"Description","text":"Package version bumped Changelog updated","code":""},{"path":[]},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"introduction","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Introduction","title":"gDR annotation","text":"running gDR pipeline, essential annotate data properly drug cell line information. document outlines process data annotation requirements annotation files.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"annotation-files","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Annotation Files","title":"gDR annotation","text":"gDR uses two sources annotation: drug annotation cell line annotation. annotations added data table running pipeline. scripts adding data annotation located R/add_annotation.R, contains four primary functions: annotate_dt_with_cell_line annotate_dt_with_drug annotating data functions get_cell_line_annotation get_drug_annotation receiving default annotation data. recommended run cleanup_metadata function, adds annotations performs data cleaning.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"annotation-file-locations","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline > Annotation Files","what":"Annotation File Locations","title":"gDR annotation","text":"drug cell line annotation files stored gDRtestData/inst/annotation_data. two files: cell_lines.csv drugs.csv Users can edit files add annotations. updating, required reinstall gDRtestData use new annotations. Alternatively, users can use annotation files stored outside package. purpose, necessary set two environmental variables: GDR_CELLLINE_ANNOTATION: Represents path cell line annotation CSV file. GDR_DRUG_ANNOTATION: Represents path drug annotation CSV file. NOTE: gDR annotation can sourced different locations. Setting environmental variables paths annotation highest priority used first source annotation, even sources available. clarify, environmental variables internal annotation databases set, gDR prioritize environmental variables annotation. turn usage external paths data annotation, please set two environmental variables empty.","code":"Sys.setenv(GDR_CELLLINE_ANNOTATION = \"some/path/to/cell_line_annotation.csv\") Sys.setenv(GDR_DRUG_ANNOTATION = \"some/path/to/drug_annotation.csv\") Sys.setenv(GDR_CELLLINE_ANNOTATION = \"\") Sys.setenv(GDR_DRUG_ANNOTATION = \"\")"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"annotation-requirements","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Annotation Requirements","title":"gDR annotation","text":"gDR specific requirements annotation files properly annotate data.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"drug-annotation-requirements","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline > Annotation Requirements","what":"Drug Annotation Requirements","title":"gDR annotation","text":"obligatory fields drug annotation : Gnumber: Represents ID drug. DrugName: Represents name drug. drug_moa: Represents drug mechanism action.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"cell-line-annotation-requirements","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline > Annotation Requirements","what":"Cell Line Annotation Requirements","title":"gDR annotation","text":"obligatory fields cell line annotation : clid: Represents cell line ID. CellLineName: Represents name cell line. Tissue: Represents primary tissue cell line. ReferenceDivisionTime: Represents doubling time cell line hours. parental_identifier: Represents name parental cell line. subtype: Represents subtype cell line. information known cell line drug, corresponding field left empty NA. Nonetheless, since fill parameter consistently specified annotation function, default value ‘unknown’ can altered user.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"creating-a-data-table-with-annotation","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Creating a Data Table with Annotation","title":"gDR annotation","text":"illustrate, ’s example create data.table required fields drug cell line annotation:","code":"# Example of creating a data.table with required fields for drug annotation drug_annotation <- data.table( Gnumber = c(\"G1\", \"G2\", \"G3\"), DrugName = c(\"Drug A\", \"Drug B\", \"Drug C\"), drug_moa = c(\"MOA A\", \"MOA B\", \"MOA C\") ) # Example of creating a data.table with required fields for cell line annotation cell_line_annotation <- data.table( clid = c(\"Cell_Line_1\", \"Cell_Line_2\", \"Cell_Line_3\"), CellLineName = c(\"Cell Line 1\", \"Cell Line 2\", \"Cell Line 3\"), Tissue = c(\"Tissue A\", \"Tissue B\", \"Tissue C\"), ReferenceDivisionTime = c(24, 30, 28), parental_identifier = c(\"Parental 1\", \"Parental 2\", \"Parental 3\"), subtype = NA )"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"additional-information-for-genentechroche-users","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Additional Information for Genentech/Roche Users","title":"gDR annotation","text":"users within Genentech/Roche, recommend utilizing internal annotation databases. provide gDRinternal package specifically internal users, includes functions managing internal annotation data. internal user, can install gDRinternal package, gDRcore automatically utilize package source data annotation.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"conclusion","dir":"Articles","previous_headings":"Data Annotation Process for gDR Pipeline","what":"Conclusion","title":"gDR annotation","text":"Proper annotation drug cell line data crucial running gDR pipeline effectively. adhering annotation requirements following outlined process, users can ensure accurate reliable results pipeline.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-annotation.html","id":"sessioninfo","dir":"Articles","previous_headings":"","what":"SessionInfo","title":"gDR annotation","text":"","code":"sessionInfo() #> R version 4.3.0 (2023-04-21) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.3 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C #> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 #> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 #> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C #> [9] LC_ADDRESS=C LC_TELEPHONE=C #> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C #> #> time zone: Etc/UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] BiocStyle_2.30.0 #> #> loaded via a namespace (and not attached): #> [1] vctrs_0.6.5 cli_3.6.3 knitr_1.45 #> [4] rlang_1.1.5 xfun_0.42 stringi_1.8.4 #> [7] purrr_1.0.2 textshaping_0.3.7 jsonlite_1.8.9 #> [10] glue_1.8.0 htmltools_0.5.7 ragg_1.2.7 #> [13] sass_0.4.8 rmarkdown_2.25 evaluate_0.23 #> [16] jquerylib_0.1.4 fastmap_1.1.1 yaml_2.3.8 #> [19] lifecycle_1.0.4 memoise_2.0.1 bookdown_0.37 #> [22] BiocManager_1.30.22 stringr_1.5.1 compiler_4.3.0 #> [25] fs_1.6.3 systemfonts_1.0.5 digest_0.6.34 #> [28] R6_2.5.1 magrittr_2.0.3 bslib_0.6.1 #> [31] tools_4.3.0 pkgdown_2.0.7 cachem_1.0.8 #> [34] desc_1.4.3"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"gDR -- data model","text":"vignette dedicated providing -depth exploration underlying data model employed gDR suite, focus versatile MultiAssayExperiment object – cornerstone gDR ecosystem. vignette delves intricacies data model, shedding light different components organized within MultiAssayExperiment object. basic essential object gDR, MultiAssayExperiment encapsulates diverse dimensions drug response data, providing unified coherent framework analysis. primary goal equip users detailed understanding gDRsuite data model utilization within MultiAssayExperiment object. practical examples thorough explanations, aim demonstrate gDRcore’s core functions pipeline facilitate efficient analysis, providing valuable insights drug response dynamics. information data processing can found gDRcore.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"general-overview-of-the-data-model","dir":"Articles","previous_headings":"","what":"General overview of the data model","title":"gDR -- data model","text":"gDR suite, culmination drug response data encapsulated form MultiAssayExperiment object, representing versatile cohesive framework analysis diverse experimental scenarios.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"supported-experiments","dir":"Articles","previous_headings":"General overview of the data model","what":"Supported Experiments:","title":"gDR -- data model","text":"gDR suite accommodates three primary types experiments within MultiAssayExperiment object: single-agent experiment: involves assessment drug responses single agent, providing insights individual treatment effects. combination experiments: explores interactions multiple agents, unraveling complexities combined drug treatments effects. co-dilution experiments: Focused studying effects diluting concentrations compounds, codilution experiments provide valuable data concentration-dependent aspects drug responses.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"summarizedexperiment-objects","dir":"Articles","previous_headings":"General overview of the data model","what":"SummarizedExperiment objects:","title":"gDR -- data model","text":"experiment within MultiAssayExperiment represented SummarizedExperiment object. encapsulates essential components necessary comprehensive analysis: assays: Containing actual data, assays provide numerical representation drug responses associated experimental measurements. gDR, assays represented BumpyMatrix object. rowData: Encompassing information related features, rowData provides context entities analyzed, drugs, compounds, concentrations. gDR, rowData represented DataFrame object S4Vectors colData: Describing experimental conditions, colData captures metadata associated cell lines, including tissues, reference division time, relevant covariates. gDR, colData represented DataFrame object S4Vectors metadata: Offering additional information experiment, metadata provides contextual layer enhance understanding experimental setup.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"multiassayexperiment-object","dir":"Articles","previous_headings":"","what":"MultiAssayExperiment object","title":"gDR -- data model","text":"core, MultiAssayExperiment object designed hold collection SummarizedExperiment objects, representing distinct experiment type within gDR suite. simplicity ensures clean efficient organization data, facilitating user-friendly experience. extract specific experiments MultiAssayExperiment object, [[ operator can used example, access data related combination experiments, one can use MAE[[\"combination\"]], MAE represents MultiAssayExperiment object. gain insights available experiments within MultiAssayExperiment object, MultiAssayExperiment::experiments function can used.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"summarizedexperiment-object","dir":"Articles","previous_headings":"","what":"SummarizedExperiment object","title":"gDR -- data model","text":"SummarizedExperiment object emerges pivotal structure, integrating drug response data essential metadata. versatile container plays central role storage information related drugs, cell lines, experimental conditions, providing comprehensive foundation nuanced analysis within gDR. SummarizedExperiment object gDR contains four essential components:","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"assays","dir":"Articles","previous_headings":"SummarizedExperiment object","what":"Assays","title":"gDR -- data model","text":"section encapsulates drug response data , offering numerical representation experimental measurements. Whether involves single-agent studies, combination treatments, co-dilution experiments, assays contain crucial data points analysis. list available assays given gDR experiment can obtained using SummarizedExperiment::assayNames SummarizedExperiment object. extraction specific assay can done using SummarizedExperiment::assay function, .e. SummarizedExperiment::assay(se, \"Normalized\"), se SummarizedExperiment object, Normalized name assay within experiment. gDR experiments contain two sets assays. One set single-agent co-dilution experiments (five basic assays), another set combinations experiments (five basic assays plus four – combination-specific). List assays (combination-specific assays marked asterisk): RawTreated – stores treated references Controls – represents untreated, control references Normalized – represents normalized data compute RelativeViability GRValues (default gDR normalization types) Averaged – stores averaged replicates computed mean standard deviation Metrics – contains fitted response curves excess (*) – excess data pair concentration values (represents Bliss excess, HSA excess, data smoothing values) all_iso_points (*) stores isobologram points isobolograms (*) – stores isobologram curves scores (*) – scores data pair concentration values (HSA score, Bliss Score, CI (combination index) scores) assays stored BumpyMatrix objects. Assays represented numbers 3-9 additionally contain information normalization_type distinguish different metrics calculated normalization type (RelativeViability GRValues default). gDR BumpyMatrix objects can easily transformed data.table object using gDRutils::convert_se_assay_to_dt function. function also includes information rowData colData.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"rowdata","dir":"Articles","previous_headings":"SummarizedExperiment object","what":"rowData","title":"gDR -- data model","text":"rowData provides context features analyzed, rowData dedicated information drugs, compounds, concentrations annotations database. Additional perturbations replicates might also stored rowData. rowData can extracted SummarizedExperiment object using SummarizedExperiment::rowData function.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"coldata","dir":"Articles","previous_headings":"SummarizedExperiment object","what":"colData","title":"gDR -- data model","text":"colData represents experimental cell lines. includes details cell lines annotations. colData can extracted SummarizedExperiment object using SummarizedExperiment::colData function.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"metadata","dir":"Articles","previous_headings":"SummarizedExperiment object","what":"metadata","title":"gDR -- data model","text":"metadata offers extra layer information experiment , metadata provides context enhance comprehension. may include details experimental design, sources data, relevant information aids interpretation results. metadata information can extracted using S4Vectors::metadata function. gDR object metadata information stored list.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDR-data-model.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"gDR -- data model","text":"","code":"## R version 4.3.0 (2023-04-21) ## Platform: x86_64-pc-linux-gnu (64-bit) ## Running under: Ubuntu 22.04.3 LTS ## ## Matrix products: default ## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 ## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 ## ## locale: ## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C ## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 ## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 ## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C ## [9] LC_ADDRESS=C LC_TELEPHONE=C ## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C ## ## time zone: Etc/UTC ## tzcode source: system (glibc) ## ## attached base packages: ## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages: ## [1] BiocStyle_2.30.0 ## ## loaded via a namespace (and not attached): ## [1] vctrs_0.6.5 cli_3.6.3 knitr_1.45 ## [4] rlang_1.1.5 xfun_0.42 stringi_1.8.4 ## [7] purrr_1.0.2 textshaping_0.3.7 jsonlite_1.8.9 ## [10] glue_1.8.0 htmltools_0.5.7 ragg_1.2.7 ## [13] sass_0.4.8 rmarkdown_2.25 evaluate_0.23 ## [16] jquerylib_0.1.4 fastmap_1.1.1 yaml_2.3.8 ## [19] lifecycle_1.0.4 memoise_2.0.1 bookdown_0.37 ## [22] BiocManager_1.30.22 stringr_1.5.1 compiler_4.3.0 ## [25] fs_1.6.3 systemfonts_1.0.5 digest_0.6.34 ## [28] R6_2.5.1 magrittr_2.0.3 bslib_0.6.1 ## [31] tools_4.3.0 pkgdown_2.0.7 cachem_1.0.8 ## [34] desc_1.4.3"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"overview","dir":"Articles","previous_headings":"","what":"Overview","title":"gDRcore","text":"gDRcore part gDR suite. package provides set tools proces analyze drug response data.","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"data-model","dir":"Articles","previous_headings":"Introduction","what":"Data model","title":"gDRcore","text":"data model built MultiAssayExperiments (MAE) structure. Within MAE, SummarizedExperiment (SE) contains different unit type (e.g. single-agent, combination treatment). Columns MAE defined cell lines modification shared SEs. Rows defined treatments (e.g drugs, perturbations) specific SE. Assays SE different levels data processing (raw, control, normalized, averaged data, well metrics). nested element assays SEs comprises series table (data.table practice). Although elements need series number elements, attributes (columns table) consistent across SE.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"drug-processing","dir":"Articles","previous_headings":"Introduction","what":"Drug processing","title":"gDRcore","text":"drug response data, input files need merged measurement (data) associated right metadata (cell line properties treatment definition). Metadata can added function cleanup_metadata right reference databases place. data metadata merged long table, wrapper function runDrugResponseProcessingPipeline can used generate MAE processed analyzed data. . practice runDrugResponseProcessingPipeline following steps: create_SE creates structure MAE associated SEs assigning metadata row column attributes. assignment performed function split_SE_components (see details assumption made building SE structures). create_SE also dispatches raw data controls right nested tables. Note data may duplicated different SEs make self-contained. normalize_SE normalizes raw data based control. Calculation GR value based cell line division time provided reference database pre-treatment control provided. information missing, GR values calculated. Additional normalization can added new rows nested table. average_SE averages technical replicates stored nested table averaged. fit_SE fits dose-response curves calculates response metrics normalization type. fit_SE.combinations calculates synergy scores drug combination data , data appropriate, fits along two drugs matrix-level metrics (e.g. isobolograms) calculated. also performed normalization type independently. . functions process data parameters specifying names variables assays. Additional parameters available personalize processing steps force nesting () attribute, specify attributes considered technical replicates .","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"data-preprocessing","dir":"Articles","previous_headings":"Use Cases","what":"Data preprocessing","title":"gDRcore","text":"Please familiarize gDRimport package containing bunch tools allowing prepare input data gDRcore. example made based artificial dataset called data1 available within gDRimport package. gDR required three types data used raw input: Template, Manifest, RawData. info three types data find general documentation. Provided dataset needs merged one data.table object able run gDR pipeline. process can done using two functions – gDRimport::load_data() gDRcore::merge_data().","code":"td <- gDRimport::get_test_data()"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"running-gdr-pipeline","dir":"Articles","previous_headings":"Use Cases","what":"Running gDR pipeline","title":"gDRcore","text":"provide --one function splits data appropriate data types, creates SummarizedExperiment object data type, splits data treatment control assays, normalizes, averages, calculates gDR metrics, finally, creates MultiAssayExperiment object. function called runDrugResponseProcessingPipeline. can subset MultiAssayExperiment receive SummarizedExperiment specific data type, e.g.","code":"mae <- runDrugResponseProcessingPipeline(input_df) mae #> A MultiAssayExperiment object of 2 listed #> experiments with user-defined names and respective classes. #> Containing an ExperimentList class object of length 2: #> [1] combination: SummarizedExperiment with 2 rows and 6 columns #> [2] single-agent: SummarizedExperiment with 3 rows and 6 columns #> Functionality: #> experiments() - obtain the ExperimentList instance #> colData() - the primary/phenotype DataFrame #> sampleMap() - the sample coordination DataFrame #> `$`, `[`, `[[` - extract colData columns, subset, or experiment #> *Format() - convert into a long or wide DataFrame #> assays() - convert ExperimentList to a SimpleList of matrices #> exportClass() - save data to flat files mae[[\"single-agent\"]] #> class: SummarizedExperiment #> dim: 3 6 #> metadata(5): identifiers experiment_metadata Keys fit_parameters #> .internal #> assays(5): RawTreated Controls Normalized Averaged Metrics #> rownames(3): G00002_drug_002_moa_A_168 G00004_drug_004_moa_A_168 #> G00011_drug_011_moa_B_168 #> rowData names(4): Gnumber DrugName drug_moa Duration #> colnames(6): CL00011_cellline_BA_breast_cellline_BA_unknown_26 #> CL00012_cellline_CA_breast_cellline_CA_unknown_30 ... #> CL00015_cellline_FA_breast_cellline_FA_unknown_42 #> CL00018_cellline_IB_breast_cellline_IB_unknown_54 #> colData names(6): clid CellLineName ... subtype ReferenceDivisionTime"},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"data-extraction","dir":"Articles","previous_headings":"Use Cases","what":"Data extraction","title":"gDRcore","text":"Extraction data either MultiAssayExperiment SummarizedExperiment objects user-friendly structures well data transformations can done using gDRutils. encourage read gDRutils vignette familiarize functionalities.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/articles/gDRcore.html","id":"sessioninfo","dir":"Articles","previous_headings":"","what":"SessionInfo","title":"gDRcore","text":"","code":"sessionInfo() #> R version 4.3.0 (2023-04-21) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.3 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C #> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 #> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 #> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C #> [9] LC_ADDRESS=C LC_TELEPHONE=C #> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C #> #> time zone: Etc/UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] gDRcore_1.5.4 gDRtestData_1.5.1 BiocStyle_2.30.0 #> #> loaded via a namespace (and not attached): #> [1] bitops_1.0-9 fastmap_1.1.1 #> [3] RCurl_1.98-1.16 BumpyMatrix_1.10.0 #> [5] TH.data_1.1-3 digest_0.6.34 #> [7] lifecycle_1.0.4 gDRutils_1.5.6 #> [9] survival_3.5-5 magrittr_2.0.3 #> [11] compiler_4.3.0 rlang_1.1.5 #> [13] sass_0.4.8 drc_3.0-1 #> [15] tools_4.3.0 plotrix_3.8-4 #> [17] yaml_2.3.8 data.table_1.16.4 #> [19] knitr_1.45 lambda.r_1.2.4 #> [21] S4Arrays_1.2.1 DelayedArray_0.28.0 #> [23] abind_1.4-8 multcomp_1.4-26 #> [25] BiocParallel_1.36.0 purrr_1.0.2 #> [27] BiocGenerics_0.48.1 desc_1.4.3 #> [29] grid_4.3.0 stats4_4.3.0 #> [31] colorspace_2.1-1 scales_1.3.0 #> [33] MASS_7.3-58.4 gtools_3.9.5 #> [35] MultiAssayExperiment_1.28.0 SummarizedExperiment_1.32.0 #> [37] cli_3.6.3 mvtnorm_1.3-3 #> [39] rmarkdown_2.25 crayon_1.5.3 #> [41] ragg_1.2.7 readxl_1.4.3 #> [43] cachem_1.0.8 stringr_1.5.1 #> [45] splines_4.3.0 zlibbioc_1.48.2 #> [47] gDRimport_1.5.4 assertthat_0.2.1 #> [49] parallel_4.3.0 formatR_1.14 #> [51] BiocManager_1.30.22 cellranger_1.1.0 #> [53] XVector_0.42.0 matrixStats_1.5.0 #> [55] vctrs_0.6.5 Matrix_1.6-5 #> [57] sandwich_3.1-1 jsonlite_1.8.9 #> [59] carData_3.0-5 bookdown_0.37 #> [61] car_3.1-3 IRanges_2.36.0 #> [63] S4Vectors_0.40.2 Formula_1.2-5 #> [65] systemfonts_1.0.5 testthat_3.2.1 #> [67] jquerylib_0.1.4 rematch_2.0.0 #> [69] glue_1.8.0 pkgdown_2.0.7 #> [71] codetools_0.2-19 stringi_1.8.4 #> [73] futile.logger_1.4.3 GenomeInfoDb_1.38.8 #> [75] GenomicRanges_1.54.1 munsell_0.5.1 #> [77] tibble_3.2.1 pillar_1.10.1 #> [79] htmltools_0.5.7 brio_1.1.4 #> [81] GenomeInfoDbData_1.2.11 R6_2.5.1 #> [83] textshaping_0.3.7 evaluate_0.23 #> [85] lattice_0.21-8 Biobase_2.62.0 #> [87] futile.options_1.0.1 backports_1.5.0 #> [89] memoise_2.0.1 bslib_0.6.1 #> [91] SparseArray_1.2.4 checkmate_2.3.2 #> [93] xfun_0.42 fs_1.6.3 #> [95] MatrixGenerics_1.14.0 zoo_1.8-12 #> [97] pkgconfig_2.0.3"},{"path":"https://gdrplatform.github.io/gDRcore/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Bartosz Czech. Author. Arkadiusz Gladki. Maintainer, author. Marc Hafner. Author. Pawel Piatkowski. Author. Natalia Potocka. Author. Dariusz Scigocki. Author. Janina Smola. Author. Sergiu Mocanu. Author. Marcin Kamianowski. Author. Allison Vuong. Author.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Czech B, Gladki , Hafner M, Piatkowski P, Potocka N, Scigocki D, Smola J, Mocanu S, Kamianowski M, Vuong (2025). gDRcore: Processing functions interface process analyze drug dose-response data. https://github.com/gdrplatform/gDRcore, https://gdrplatform.github.io/gDRcore/.","code":"@Manual{, title = {gDRcore: Processing functions and interface to process and analyze drug dose-response data}, author = {Bartosz Czech and Arkadiusz Gladki and Marc Hafner and Pawel Piatkowski and Natalia Potocka and Dariusz Scigocki and Janina Smola and Sergiu Mocanu and Marcin Kamianowski and Allison Vuong}, year = {2025}, note = {https://github.com/gdrplatform/gDRcore, https://gdrplatform.github.io/gDRcore/}, }"},{"path":"https://gdrplatform.github.io/gDRcore/index.html","id":"gdrcore","dir":"","previous_headings":"","what":"Processing functions and interface to process and analyze drug\n dose-response data","title":"Processing functions and interface to process and analyze drug\n dose-response data","text":"Processing drug response data involves merging metadata raw data long DataFrame. followed normalization, averaging, fitting ultimately results drug response fitting metrics.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/index.html","id":"website","dir":"","previous_headings":"","what":"Website","title":"Processing functions and interface to process and analyze drug\n dose-response data","text":"package website available link.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/add_intermediate_data.html","id":null,"dir":"Reference","previous_headings":"","what":"add intermediate data (qs files) for given ma — add_intermediate_data","title":"add intermediate data (qs files) for given ma — add_intermediate_data","text":"add intermediate data (qs files) given ma","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/add_intermediate_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"add intermediate data (qs files) for given ma — add_intermediate_data","text":"","code":"add_intermediate_data(mae, data_dir, steps = get_pipeline_steps())"},{"path":"https://gdrplatform.github.io/gDRcore/reference/add_intermediate_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"add intermediate data (qs files) for given ma — add_intermediate_data","text":"mae mae dose-response data data_dir output directory steps character vector pipeline steps intermediate data saved","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/add_intermediate_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"add intermediate data (qs files) for given ma — add_intermediate_data","text":"NULL","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":null,"dir":"Reference","previous_headings":"","what":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"Annotate cell line data provided annotation table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"","code":"annotate_dt_with_cell_line(data, cell_line_annotation, fill = \"unknown\")"},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"data data.table dose-response data cell_line_annotation data.table cell line annotations fill string indicating unknown cell lines filled DB","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"data.table annotated cell lines","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_cell_line.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"annotate_dt_with_cell_line — annotate_dt_with_cell_line","text":"","code":"data <- data.table::data.table( clid = c(\"CL1\", \"CL2\", \"CL3\"), Gnumber = c(\"D1\", \"D2\", \"D3\") ) cell_line_annotation <- get_cell_line_annotation(data) annotated_metadata <- annotate_dt_with_cell_line(data, cell_line_annotation)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":null,"dir":"Reference","previous_headings":"","what":"annotate_dt_with_drug — annotate_dt_with_drug","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"Annotate drug data provided annotation table","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"","code":"annotate_dt_with_drug(data, drug_annotation, fill = \"unknown\")"},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"data data.table dose-response data drug_annotation data.table drug annotations fill string indicating unknown drugs filled DB","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"data.table annotated drugs","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/annotate_dt_with_drug.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"annotate_dt_with_drug — annotate_dt_with_drug","text":"","code":"data <- data.table::data.table( clid = c(\"CL1\", \"CL2\", \"CL3\"), Gnumber = c(\"D1\", \"D2\", \"D3\") ) drug_annotation <- get_drug_annotation(data) annotated_metadata <- annotate_dt_with_drug(data, drug_annotation)"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate a GR value. — calculate_GR_value","title":"Calculate a GR value. — calculate_GR_value","text":"Calculate GR value given set dose response values.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate a GR value. — calculate_GR_value","text":"","code":"calculate_GR_value( rel_viability, corrected_readout, day0_readout, untrt_readout, ndigit_rounding, duration, ref_div_time, cap = 1.25 ) calculate_time_dep_GR_value( corrected_readout, day0_readout, untrt_readout, ndigit_rounding ) calculate_endpt_GR_value( rel_viability, duration, ref_div_time, cap = 1.25, ndigit_rounding )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate a GR value. — calculate_GR_value","text":"rel_viability numeric vector representing Relative Viability. corrected_readout numeric vector containing corrected readout. day0_readout numeric vector containing day 0 readout. untrt_readout numeric vector containing untreated readout. ndigit_rounding integer specifying number digits use calculation rounding. duration numeric value specifying length time cells treated (hours). ref_div_time numeric value specifying reference division time cell line experiment. cap numeric value representing value cap highest allowed relative viability .","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate a GR value. — calculate_GR_value","text":"numeric vector containing GR values, one value element input vectors.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Calculate a GR value. — calculate_GR_value","text":"Note function expects numeric vectors length. calculate_GR_value try greedily calculate GR value. day 0 readouts available, duration ref_div_time used try back-calculate day 0 value order produce GR value. case calculating reference GR value multiple reference readout values, vectorized calculation performed resulting vector averaged outside function. Note expected ref_div_time duration reported units.","code":""},{"path":[]},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_GR_value.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate a GR value. — calculate_GR_value","text":"","code":"duration <- 144 rv <- seq(0.1, 1, 0.1) corrected <- seq(41000, 50000, 1000) day0 <- seq(91000, 95500, 500) untrt <- rep(c(115000, 118000), 5) calculate_GR_value( rel_viability = rv, corrected_readout = corrected, day0_readout = day0, untrt_readout = untrt, ndigit_rounding = 4, duration = duration, ref_div_time = duration / 2 ) #> [1] -0.9057 -0.8802 -0.9058 -0.8794 -0.9065 -0.8791 -0.9077 -0.8793 -0.9095 #> [10] -0.8800 readouts <- rep(10000, 5) calculate_time_dep_GR_value(readouts, readouts * 1.32, readouts * 2, 2) #> [1] -0.37 -0.37 -0.37 -0.37 -0.37 readouts <- rep(10000, 5) calculate_endpt_GR_value(readouts, 72, 1, ndigit_rounding = 2) #> [1] 1.01 1.01 1.01 1.01 1.01"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate the difference between values in two data.tables — calculate_excess","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"Calculate difference values, likely representing metric, two data.tables.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"","code":"calculate_excess( metric, measured, series_identifiers, metric_col, measured_col )"},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"metric data.table often representing readouts derived calculating metric. Examples include hsa bliss calculations single-agent data. measured data.table often representing measured data experiment. series_identifiers character vector identifiers measured metric define unique data point. metric_col string column metric use excess calculation. measured_col string column measured use excess calculation.","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"data.table measured, now additional column named excess (positive values synergy/benefit).","code":""},{"path":"https://gdrplatform.github.io/gDRcore/reference/calculate_excess.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate the difference between values in two data.tables — calculate_excess","text":"","code":"metric <- data.table::data.table( Concentration = c(1, 2, 3, 1, 2, 3), Concentration_2 = c(1, 1, 1, 2, 2, 2), GRvalue = c(100, 200, 300, 400, 500, 600) ) measured <- data.table::data.table( Concentration = c(3, 1, 2, 2, 1, 3), Concentration_2 = c(1, 1, 1, 2, 2, 2), testvalue = c(200, 0, 100, 400, 300, 500) ) series_identifiers <- c(\"Concentration\", \"Concentration_2\") metric_col <- \"GRvalue\" measured_col <- \"testvalue\" calculate_excess( metric, measured, series_identifiers, metric_col, measured_col ) #> Concentration Concentration_2 x #>
-td <- gDRimport::get_test_data() -#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : -#> object 'type_sum.accel' not found
td <- gDRimport::get_test_data() -#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : -#> object 'type_sum.accel' not found
td <- gDRimport::get_test_data()
Provided dataset needs to be merged into the one data.table object to be able to run gDR pipeline. This process can be done using two functions – @@ -267,15 +265,15 @@
data.table
Source: DESCRIPTION
DESCRIPTION
Czech B, Gladki A, Hafner M, Piatkowski P, Potocka N, Scigocki D, Smola J, Mocanu S, Kamianowski M, Vuong A (2024). +
Czech B, Gladki A, Hafner M, Piatkowski P, Potocka N, Scigocki D, Smola J, Mocanu S, Kamianowski M, Vuong A (2025). gDRcore: Processing functions and interface to process and analyze drug dose-response data. https://github.com/gdrplatform/gDRcore, https://gdrplatform.github.io/gDRcore/. @@ -111,7 +111,7 @@
NEWS.md
gDRutils::remove_drug_batch
intersect
remove_drug_batch()
R/add_annotation.R
remove_drug_batch.Rd
Remove batch from Gnumber
remove_drug_batch(drug)
drug name
Gnumber without a batch
remove_drug_batch("DRUG.123") -#> [1] "DRUG" - -