-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathell2utm.py
81 lines (68 loc) · 2.89 KB
/
ell2utm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import math
def ell2utm(lat, lon, a, e2, lcm):
#% ELL2UTM Converts ellipsoidal coordinates to UTM.
#% UTM northing and easting coordinates in a 6 degree
#% system. Zones begin with zone 1 at longitude 180E
#% to 186E and increase eastward. Formulae from E.J.
#% Krakiwsky, "Conformal Map Projections in Geodesy",
#% Dept. Surveying Engineering Lecture Notes No. 37,
#% University of New Brunswick, Fredericton, N.B.
#% Vectorized.
#% Version: 2011-02-19
#% Useage: [N,E,Zone]=ell2utm(lat,lon,a,e2,lcm)
#% [N,E,Zone]=ell2utm(lat,lon,a,e2)
#% [N,E,Zone]=ell2utm(lat,lon,lcm)
#% [N,E,Zone]=ell2utm(lat,lon)
#% Input: lat - vector of latitudes (rad)
#% lon - vector of longitudes (rad)
#% a - ref. ellipsoid major semi-axis (m) default GRS80
#% e2 - ref. ellipsoid eccentricity squared default GRS80
#% lcm - central meridian default = standard UTM def'n
#% Output: N - vector of UTM northings (m)
#% E - vector of UTM eastings (m)
#% Zone- vector of UTM zones
#
#% Copyright (c) 2011, Michael R. Craymer
#% All rights reserved.
#% Email: [email protected]
Zone = 0
#Zone=floor((rad2deg(lon)-180)/6)+1
#Zone=Zone+(Zone<0)*60-(Zone>60)*60
#lcm=deg2rad(Zone*6-183)
ko = 0.9996 # Scale factor
No = 0 # False northing (north)
if lat < 0:
No = 1e7 # False northing (south)
Eo = 500000 # False easting
lam = lon-lcm
lam = lam-(lam >= math.pi)*(2*math.pi)
#print('\nZones\n')
#print('%3d\n',Zone')
#print('\nCentral Meridians\n')
#print('%3d %2d %9.6f\n',rad2dms(lcm)')
#print('\nLongitudes wrt Central Meridian\n')
#print('%3d %2d %9.6f\n',rad2dms(lam)')
f = 1-math.sqrt(1-e2)
RN = a/(1-e2*math.sin(lat)**2)**0.5
#RM = a*(1-e2)/(1-e2*math.sin(lat)**2)**1.5
t = math.tan(lat)
h = math.sqrt(e2*math.cos(lat)**2/(1-e2))
n = f/(2-f)
a0 = 1+n^2/4+n^4/64
a2 = 1.5*(n-n^3/8)
a4 = 15/16*(n^2-n^4/4)
a6 = 35/48*n^3
a8 = 315/512*n^4
s = a/(1+n)*(a0*lat-a2*math.sin(2*lat)+a4*math.sin(4*lat)-a6*math.sin(6*lat)+a8*math.sin(8*lat))
E1 = lam*math.cos(lat)
E2 = lam**3*math.cos(lat)**3/6*(1-t**2+h**2)
E3 = lam**5*math.cos(lat)**5/120*(5-18*t**2+t**4+14*h**2-58*t**2*h**2+13*h**4+4*h**6-64*t**2*h**4-24*t**2*h**6)
E4 = lam**7*math.cos(lat)**7/5040*(61-479*t**2+179*t**4-t**6)
E = Eo + ko*RN*(E1 + E2 + E3 + E4)
N1 = lam**2/2 * math.sin(lat) * math.cos(lat)
N2 = lam**4/24 * math.sin(lat) * math.cos(lat)**3 * (5-t**2+9*h**2+4*h**4)
N3 = (lam**6/720 * math.sin(lat) * math.cos(lat)**5 *
(61-58*t**2+t**4+270*h**2- 330*t**2 *h**2+445*h**4+ 324*h**6-680*t**2 *h**4+ 88*h**8-600*t**2 *h**6- 192*t**2 *h**8))
N4 = lam**8/40320 * math.sin(lat) * math.cos(lat)**7 * (1385-311*t**2+543*t**4-t**6)
N = No + ko*RN*(s/RN + N1 + N2 + N3 + N4)
return (N, E, Zone)