-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
101 lines (76 loc) · 2.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
utility functions used for landslide use case
"""
import os
import numpy as np
import xesmf as xe
# installation function
def install_api_key():
home_dir = os.path.expanduser("~")
work_dir = os.getcwd()
# create Topography API key file
topo_key = input("Enter Your OpenTopography API Key: ")
topo_config_path = os.path.join(work_dir, ".opentopography.txt")
with open(topo_config_path, "w") as topo_config_file:
topo_config_file.write(topo_key)
print("OpenTopography API Key file is created at {}.".format(topo_config_path))
# create CDS API key file
cds_key = input("Enter Your CDS API Key: ")
cds_url = "https://cds.climate.copernicus.eu/api"
cds_config_content = "url: {} \nkey: {}".format(cds_url, cds_key)
cds_config_path = os.path.join(home_dir, ".cdsapirc")
with open(cds_config_path, "w") as cds_config_file:
cds_config_file.write(cds_config_content)
print("CDS API Key file is created at {}".format(cds_config_path))
# regirdding function
def regrid_data(src_grid, src_coor, dest_coor, regrid_method="nearest_s2d"):
regridder = xe.Regridder(src_coor, dest_coor, regrid_method)
dest_grid = regridder(src_grid)
return dest_grid
# calculate subsurface flow function
def cal_subsurface_flow_depth(
soil_depth, soil_water_layer, layer_threshold=[0, 0.07, 0.28, 1, 2], porosity=0.5
):
shape = [len(soil_water_layer), *soil_depth.shape]
soil_depth_layer = np.empty(shape, soil_depth.dtype)
for i in range(0, len(soil_water_layer)):
soil_layer = np.copy(soil_depth)
soil_layer[soil_layer >= layer_threshold[i + 1]] = layer_threshold[i + 1]
soil_layer[soil_layer <= layer_threshold[i]] = layer_threshold[i]
soil_layer = soil_layer - layer_threshold[i]
soil_depth_layer[i] = soil_layer
water_depth_layer = soil_water_layer * soil_depth_layer / porosity
subsurface_flow_depth = np.sum(water_depth_layer, axis=0)
return subsurface_flow_depth
# define safety factor function
def cal_safety_factor(
slope_angle,
subsurface_flow_depth,
soil_depth,
root_cohesion=5000,
soil_cohesion=5000,
soil_bulk_density=1300,
water_density=1000,
gravity_acceleration=9.806,
soil_internal_friction_angle=35,
):
# calculate tan φ
tan_fi = np.tan(soil_internal_friction_angle * np.pi / 180)
# calculate hw/hs
relative_wetness = subsurface_flow_depth / soil_depth
# left term
left_term = (
(root_cohesion + soil_cohesion)
/ (soil_depth * soil_bulk_density * gravity_acceleration)
/ np.sin(slope_angle)
)
# right term
right_term = (
np.cos(slope_angle)
* tan_fi
* (1 - relative_wetness * water_density / soil_bulk_density)
/ np.sin(slope_angle)
)
# safety factor
safety_factor = left_term + right_term
return safety_factor