-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
153 lines (135 loc) · 4.94 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Description: pre-train model with RSI Dataset
"""
import argparse
import csv
import datetime
import os
import uuid
import torch
import torch.nn.functional as F
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from tqdm import tqdm
import rsiattack
from rsiattack.model import func
def get_args_parser(add_help=True):
parser = argparse.ArgumentParser(
description="training the models to attack", add_help=add_help
)
parser.add_argument(
"--data_type",
type=str,
choices=["FGSCR_42", "MTARSI"],
default="MTARSI",
help="used trainset in training",
)
parser.add_argument(
"--data_dir", type=str, default="./dataset", help="path of the dataset"
)
parser.add_argument("--log_path", type=str, default="logs/train_logs.csv")
parser.add_argument(
"--save_dir",
type=str,
default="./checkpoints",
help="trained model where to save",
)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--batch_size", type=int, default=18)
parser.add_argument("--device", type=str, default="cuda:0")
return parser
def train(args):
"""train backbone models"""
if args.data_type == "FGSCR_42":
args.num_classes = 42
elif args.data_type == "MTARSI":
args.num_classes = 20
model_box = func.models_mapping
train_set = rsiattack.trainDataset("train", args)
test_set = rsiattack.trainDataset("test", args)
train_loader = DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, num_workers=5
)
test_loader = DataLoader(
test_set, batch_size=args.batch_size, shuffle=False, num_workers=5
)
if not os.path.exists("./logs"):
os.makedirs("./logs")
for key, fc in model_box.items():
net = fc(args.num_classes) # get net Class from model_box
optimizer = torch.optim.SGD(net.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
loss = torch.nn.CrossEntropyLoss()
net = net.to(args.device)
print("** start training {key}, Data is {args.data_type} **")
for _ in tqdm(range(args.epochs)):
net.train()
for data, gt in train_loader:
data, gt = data.to(args.device), gt.to(args.device)
y_hat = net(data)
pred = torch.argmax(y_hat, 1)
lossrt = loss(y_hat, gt)
optimizer.zero_grad()
lossrt.backward()
optimizer.step()
scheduler.step()
""" eval model and print eval result """
net.eval()
with torch.no_grad():
correct_pred = 0
for data, target in train_loader:
data, target = data.to(args.device), target.to(args.device)
y_hat = F.softmax(net(data), dim=1)
pred = torch.argmax(y_hat, 1)
correct_pred += (pred == target).sum()
train_acc = correct_pred.item() / len(train_set)
with torch.no_grad():
correct_pred = 0
for data, target in test_loader:
data, target = data.to(args.device), target.to(args.device)
y_hat = F.softmax(net(data), dim=1)
pred = torch.argmax(y_hat, 1)
correct_pred += (pred == target).sum()
test_acc = correct_pred.item() / len(test_set)
if not os.path.exists(args.log_path):
with open(args.log_path, "w") as f:
csv_writer = csv.writer(f)
log_head = [
"model_name",
"model_type",
"train_type",
"create_time",
"train_acc(%)",
"test_acc(%)",
"save_path",
"backbone",
]
csv_writer.writerow(log_head)
with open(args.log_path, "a+") as f:
# write logs in log_path.csv
random_id = str(uuid.uuid4())
dtime = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
file_name = key + "_" + args.data_type + ".pt"
save_path = os.path.join(args.save_dir, file_name)
row_log = [
file_name,
key,
args.data_type,
dtime,
f"{train_acc * 100:.4f}",
f"{test_acc * 100:.4f}",
save_path,
str(args.backbone),
]
csv_writer = csv.writer(f)
csv_writer.writerow(row_log)
torch.save(net.state_dict(), save_path)
print(
f"training result is trainacc = {train_acc * 100:04f}%"
f"testacc = {test_acc * 100:04f}%"
)
print("__finish training__")
if __name__ == "__main__":
args = get_args_parser().parse_args()
train(args)