-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
364 lines (292 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import json
import os
from collections import defaultdict
import torch
import torch.nn.functional as F
from random import randint
from utils.loss_utils import psnr, ssim
from gaussian_renderer import render
from scene import Scene, GaussianModel, EnvLight
from utils.general_utils import seed_everything, visualize_depth
from tqdm import tqdm
from argparse import ArgumentParser
from torchvision.utils import make_grid, save_image
import numpy as np
import kornia
from omegaconf import OmegaConf
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
EPS = 1e-5
def training(args):
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
tb_writer = None
print("Tensorboard not available: not logging progress")
vis_path = os.path.join(args.model_path, 'visualization')
os.makedirs(vis_path, exist_ok=True)
gaussians = GaussianModel(args)
scene = Scene(args, gaussians)
gaussians.training_setup(args)
if args.env_map_res > 0:
env_map = EnvLight(resolution=args.env_map_res).cuda()
env_map.training_setup(args)
else:
env_map = None
first_iter = 0
if args.start_checkpoint:
(model_params, first_iter) = torch.load(args.start_checkpoint)
gaussians.restore(model_params, args)
if env_map is not None:
env_checkpoint = os.path.join(os.path.dirname(args.checkpoint),
os.path.basename(args.checkpoint).replace("chkpnt", "env_light_chkpnt"))
(light_params, _) = torch.load(env_checkpoint)
env_map.restore(light_params)
bg_color = [1, 1, 1] if args.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_dict_for_log = defaultdict(int)
progress_bar = tqdm(range(first_iter + 1, args.iterations + 1), desc="Training progress")
for iteration in progress_bar:
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % args.sh_increase_interval == 0:
gaussians.oneupSHdegree()
if not viewpoint_stack:
viewpoint_stack = list(range(len(scene.getTrainCameras())))
viewpoint_cam = scene.getTrainCameras()[viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))]
# render v and t scale map
v = gaussians.get_inst_velocity
t_scale = gaussians.get_scaling_t.clamp_max(2)
other = [t_scale, v]
if np.random.random() < args.lambda_self_supervision:
time_shift = 3*(np.random.random() - 0.5) * scene.time_interval
else:
time_shift = None
render_pkg = render(viewpoint_cam, gaussians, args, background, env_map=env_map, other=other, time_shift=time_shift, is_training=True)
image = render_pkg["render"]
depth = render_pkg["depth"]
alpha = render_pkg["alpha"]
viewspace_point_tensor = render_pkg["viewspace_points"]
visibility_filter = render_pkg["visibility_filter"]
radii = render_pkg["radii"]
log_dict = {}
feature = render_pkg['feature'] / alpha.clamp_min(EPS)
t_map = feature[0:1]
v_map = feature[1:]
sky_mask = viewpoint_cam.sky_mask.cuda() if viewpoint_cam.sky_mask is not None else torch.zeros_like(alpha, dtype=torch.bool)
sky_depth = 900
depth = depth / alpha.clamp_min(EPS)
if env_map is not None:
if args.depth_blend_mode == 0: # harmonic mean
depth = 1 / (alpha / depth.clamp_min(EPS) + (1 - alpha) / sky_depth).clamp_min(EPS)
elif args.depth_blend_mode == 1:
depth = alpha * depth + (1 - alpha) * sky_depth
gt_image = viewpoint_cam.original_image.cuda()
loss_l1 = F.l1_loss(image, gt_image)
log_dict['loss_l1'] = loss_l1.item()
loss_ssim = 1.0 - ssim(image, gt_image)
log_dict['loss_ssim'] = loss_ssim.item()
loss = (1.0 - args.lambda_dssim) * loss_l1 + args.lambda_dssim * loss_ssim
if args.lambda_lidar > 0:
assert viewpoint_cam.pts_depth is not None
pts_depth = viewpoint_cam.pts_depth.cuda()
mask = pts_depth > 0
loss_lidar = torch.abs(1 / (pts_depth[mask] + 1e-5) - 1 / (depth[mask] + 1e-5)).mean()
if args.lidar_decay > 0:
iter_decay = np.exp(-iteration / 8000 * args.lidar_decay)
else:
iter_decay = 1
log_dict['loss_lidar'] = loss_lidar.item()
loss += iter_decay * args.lambda_lidar * loss_lidar
if args.lambda_t_reg > 0:
loss_t_reg = -torch.abs(t_map).mean()
log_dict['loss_t_reg'] = loss_t_reg.item()
loss += args.lambda_t_reg * loss_t_reg
if args.lambda_v_reg > 0:
loss_v_reg = torch.abs(v_map).mean()
log_dict['loss_v_reg'] = loss_v_reg.item()
loss += args.lambda_v_reg * loss_v_reg
if args.lambda_inv_depth > 0:
inverse_depth = 1 / (depth + 1e-5)
loss_inv_depth = kornia.losses.inverse_depth_smoothness_loss(inverse_depth[None], gt_image[None])
log_dict['loss_inv_depth'] = loss_inv_depth.item()
loss = loss + args.lambda_inv_depth * loss_inv_depth
if args.lambda_v_smooth > 0:
loss_v_smooth = kornia.losses.inverse_depth_smoothness_loss(v_map[None], gt_image[None])
log_dict['loss_v_smooth'] = loss_v_smooth.item()
loss = loss + args.lambda_v_smooth * loss_v_smooth
if args.lambda_sky_opa > 0:
o = alpha.clamp(1e-6, 1-1e-6)
sky = sky_mask.float()
loss_sky_opa = (-sky * torch.log(1 - o)).mean()
log_dict['loss_sky_opa'] = loss_sky_opa.item()
loss = loss + args.lambda_sky_opa * loss_sky_opa
if args.lambda_opacity_entropy > 0:
o = alpha.clamp(1e-6, 1 - 1e-6)
loss_opacity_entropy = -(o*torch.log(o)).mean()
log_dict['loss_opacity_entropy'] = loss_opacity_entropy.item()
loss = loss + args.lambda_opacity_entropy * loss_opacity_entropy
loss.backward()
log_dict['loss'] = loss.item()
iter_end.record()
with torch.no_grad():
psnr_for_log = psnr(image, gt_image).double()
log_dict["psnr"] = psnr_for_log
for key in ['loss', "loss_l1", "psnr"]:
ema_dict_for_log[key] = 0.4 * log_dict[key] + 0.6 * ema_dict_for_log[key]
if iteration % 10 == 0:
postfix = {k[5:] if k.startswith("loss_") else k:f"{ema_dict_for_log[k]:.{5}f}" for k, v in ema_dict_for_log.items()}
postfix["scale"] = scene.resolution_scales[scene.scale_index]
progress_bar.set_postfix(postfix)
log_dict['iter_time'] = iter_start.elapsed_time(iter_end)
log_dict['total_points'] = gaussians.get_xyz.shape[0]
# Log and save
complete_eval(tb_writer, iteration, args.test_iterations, scene, render, (args, background),
log_dict, env_map=env_map)
# Densification
if iteration > args.densify_until_iter * args.time_split_frac:
gaussians.no_time_split = False
if iteration < args.densify_until_iter and (args.densify_until_num_points < 0 or gaussians.get_xyz.shape[0] < args.densify_until_num_points):
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > args.densify_from_iter and iteration % args.densification_interval == 0:
size_threshold = args.size_threshold if (iteration > args.opacity_reset_interval and args.prune_big_point > 0) else None
if size_threshold is not None:
size_threshold = size_threshold // scene.resolution_scales[0]
gaussians.densify_and_prune(args.densify_grad_threshold, args.thresh_opa_prune, scene.cameras_extent, size_threshold, args.densify_grad_t_threshold)
if iteration % args.opacity_reset_interval == 0 or (args.white_background and iteration == args.densify_from_iter):
gaussians.reset_opacity()
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if env_map is not None and iteration < args.env_optimize_until:
env_map.optimizer.step()
env_map.optimizer.zero_grad(set_to_none = True)
torch.cuda.empty_cache()
if iteration % args.vis_step == 0 or iteration == 1:
other_img = []
feature = render_pkg['feature'] / alpha.clamp_min(1e-5)
t_map = feature[0:1]
v_map = feature[1:]
v_norm_map = v_map.norm(dim=0, keepdim=True)
et_color = visualize_depth(t_map, near=0.01, far=1)
v_color = visualize_depth(v_norm_map, near=0.01, far=1)
other_img.append(et_color)
other_img.append(v_color)
if viewpoint_cam.pts_depth is not None:
pts_depth_vis = visualize_depth(viewpoint_cam.pts_depth)
other_img.append(pts_depth_vis)
grid = make_grid([
image,
gt_image,
alpha.repeat(3, 1, 1),
torch.logical_not(sky_mask[:1]).float().repeat(3, 1, 1),
visualize_depth(depth),
] + other_img, nrow=4)
save_image(grid, os.path.join(vis_path, f"{iteration:05d}_{viewpoint_cam.colmap_id:03d}.png"))
if iteration % args.scale_increase_interval == 0:
scene.upScale()
if iteration in args.checkpoint_iterations:
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
torch.save((env_map.capture(), iteration), scene.model_path + "/env_light_chkpnt" + str(iteration) + ".pth")
def complete_eval(tb_writer, iteration, test_iterations, scene : Scene, renderFunc, renderArgs, log_dict, env_map=None):
from lpipsPyTorch import lpips
if tb_writer:
for key, value in log_dict.items():
tb_writer.add_scalar(f'train/{key}', value, iteration)
if iteration in test_iterations:
scale = scene.resolution_scales[scene.scale_index]
if iteration < args.iterations:
validation_configs = ({'name': 'test', 'cameras': scene.getTestCameras(scale=scale)},)
else:
if "kitti" in args.model_path:
# follow NSG: https://github.com/princeton-computational-imaging/neural-scene-graphs/blob/8d3d9ce9064ded8231a1374c3866f004a4a281f8/data_loader/load_kitti.py#L766
num = len(scene.getTrainCameras())//2
eval_train_frame = num//5
traincamera = sorted(scene.getTrainCameras(), key =lambda x: x.colmap_id)
validation_configs = ({'name': 'test', 'cameras': scene.getTestCameras(scale=scale)},
{'name': 'train', 'cameras': traincamera[:num][-eval_train_frame:]+traincamera[num:][-eval_train_frame:]})
else:
validation_configs = ({'name': 'test', 'cameras': scene.getTestCameras(scale=scale)},
{'name': 'train', 'cameras': scene.getTrainCameras()})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssim_test = 0.0
lpips_test = 0.0
outdir = os.path.join(args.model_path, "eval", config['name'] + f"_{iteration}" + "_render")
os.makedirs(outdir,exist_ok=True)
for idx, viewpoint in enumerate(tqdm(config['cameras'])):
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs, env_map=env_map)
image = torch.clamp(render_pkg["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
depth = render_pkg['depth']
alpha = render_pkg['alpha']
sky_depth = 900
depth = depth / alpha.clamp_min(EPS)
if env_map is not None:
if args.depth_blend_mode == 0: # harmonic mean
depth = 1 / (alpha / depth.clamp_min(EPS) + (1 - alpha) / sky_depth).clamp_min(EPS)
elif args.depth_blend_mode == 1:
depth = alpha * depth + (1 - alpha) * sky_depth
depth = visualize_depth(depth)
alpha = alpha.repeat(3, 1, 1)
grid = [gt_image, image, alpha, depth]
grid = make_grid(grid, nrow=2)
save_image(grid, os.path.join(outdir, f"{viewpoint.colmap_id:03d}.png"))
l1_test += F.l1_loss(image, gt_image).double()
psnr_test += psnr(image, gt_image).double()
ssim_test += ssim(image, gt_image).double()
lpips_test += lpips(image, gt_image, net_type='vgg').double() # very slow
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
lpips_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {} SSIM {} LPIPS {}".format(iteration, config['name'], l1_test, psnr_test, ssim_test, lpips_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - ssim', ssim_test, iteration)
with open(os.path.join(outdir, "metrics.json"), "w") as f:
json.dump({"split": config['name'], "iteration": iteration, "psnr": psnr_test.item(), "ssim": ssim_test.item(), "lpips": lpips_test.item()}, f)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--base_config", type=str, default = "configs/base.yaml")
args, _ = parser.parse_known_args()
base_conf = OmegaConf.load(args.base_config)
second_conf = OmegaConf.load(args.config)
cli_conf = OmegaConf.from_cli()
args = OmegaConf.merge(base_conf, second_conf, cli_conf)
print(args)
args.save_iterations.append(args.iterations)
args.checkpoint_iterations.append(args.iterations)
args.test_iterations.append(args.iterations)
if args.exhaust_test:
args.test_iterations += [i for i in range(0,args.iterations, args.test_interval)]
print("Optimizing " + args.model_path)
seed_everything(args.seed)
training(args)
# All done
print("\nTraining complete.")