-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathseparate.py
94 lines (78 loc) · 3.82 KB
/
separate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import glob
import os
import torch
from gaussian_renderer import render
from scene import Scene, GaussianModel, EnvLight
from utils.general_utils import seed_everything
from tqdm import tqdm
from argparse import ArgumentParser
from torchvision.utils import save_image
from omegaconf import OmegaConf
EPS = 1e-5
@torch.no_grad()
def separation(scene : Scene, renderFunc, renderArgs, env_map=None):
scale = scene.resolution_scales[0]
validation_configs = ({'name': 'test', 'cameras': scene.getTestCameras(scale=scale)},
{'name': 'train', 'cameras': scene.getTrainCameras()})
# we supppose area with altitude>0.5 is static
# here z axis is downward so is gaussians.get_xyz[:, 2] < -0.5
high_mask = gaussians.get_xyz[:, 2] < -0.5
# import pdb;pdb.set_trace()
mask = (gaussians.get_scaling_t[:, 0] > args.separate_scaling_t) | high_mask
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
outdir = os.path.join(args.model_path, "separation", config['name'])
os.makedirs(outdir,exist_ok=True)
for idx, viewpoint in enumerate(tqdm(config['cameras'])):
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs, env_map=env_map)
render_pkg_static = renderFunc(viewpoint, scene.gaussians, *renderArgs, env_map=env_map, mask=mask)
image = torch.clamp(render_pkg["render"], 0.0, 1.0)
image_static = torch.clamp(render_pkg_static["render"], 0.0, 1.0)
save_image(image, os.path.join(outdir, f"{viewpoint.colmap_id:03d}.png"))
save_image(image_static, os.path.join(outdir, f"{viewpoint.colmap_id:03d}_static.png"))
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--base_config", type=str, default = "configs/base.yaml")
args, _ = parser.parse_known_args()
base_conf = OmegaConf.load(args.base_config)
second_conf = OmegaConf.load(args.config)
cli_conf = OmegaConf.from_cli()
args = OmegaConf.merge(base_conf, second_conf, cli_conf)
args.resolution_scales = args.resolution_scales[:1]
print(args)
seed_everything(args.seed)
sep_path = os.path.join(args.model_path, 'separation')
os.makedirs(sep_path, exist_ok=True)
gaussians = GaussianModel(args)
scene = Scene(args, gaussians, shuffle=False)
if args.env_map_res > 0:
env_map = EnvLight(resolution=args.env_map_res).cuda()
env_map.training_setup(args)
else:
env_map = None
checkpoints = glob.glob(os.path.join(args.model_path, "chkpnt*.pth"))
assert len(checkpoints) > 0, "No checkpoints found."
checkpoint = sorted(checkpoints, key=lambda x: int(x.split("chkpnt")[-1].split(".")[0]))[-1]
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, args)
if env_map is not None:
env_checkpoint = os.path.join(os.path.dirname(checkpoint),
os.path.basename(checkpoint).replace("chkpnt", "env_light_chkpnt"))
(light_params, _) = torch.load(env_checkpoint)
env_map.restore(light_params)
bg_color = [1, 1, 1] if args.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
separation(scene, render, (args, background), env_map=env_map)
print("\Rendering statics and dynamics complete.")