forked from KimMeen/GraphSage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSageConv.py
306 lines (257 loc) · 11.6 KB
/
SageConv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 14 12:29:09 2020
@author: Ming Jin
SAGEConv: For full graph training version
SAGEConv_bigraph: For sampling version based on bipartite graph
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
class SAGEConv(nn.Module):
'''
This part in algorithm 1 is between the line 3-7
** Suitbale for full graph training **
Math:
h_{\mathcal{N}(i)}^{(l+1)} & = \mathrm{aggregate}
\left(\{h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right)
h_{i}^{(l+1)} & = \sigma \left(W \cdot \mathrm{concat}
(h_{i}^{l}, h_{\mathcal{N}(i)}^{l+1} + b) \right)
h_{i}^{(l+1)} & = \mathrm{norm}(h_{i}^{l})
in_feats:
Input feature size
out_feats:
Output feature size
aggregator_type:
Aggregator type to use (Mean, GCN, LSTM, Pool)
activation:
Applies an activation function to the updated node features
'''
def __init__(self, in_feats, out_feats, aggregator_type, activation=None):
super(SAGEConv, self).__init__()
self._in_feats = in_feats # "C" in the paper
self._out_feats = out_feats # "F" in the paper
self._activation_func = activation # "ReLu" and "Softmax" in the paper
self._aggre_type = aggregator_type
# aggregator weight and bias
if aggregator_type != 'gcn':
# Notice: fc_self is for other aggregators to use in line 5 (Algorithm 1)
self.fc_self = nn.Linear(self._in_feats, self._out_feats) # bias: Optional
if aggregator_type == 'pool':
self.fc_pool = nn.Linear(self._in_feats, self._in_feats)
# weight and bias in line 5 (Algorithm 1)
# GCN aggregator use this as well
self.fc_neigh = nn.Linear(self._in_feats, self._out_feats) # bias: Optional
self.reset_parameters()
def reset_parameters(self):
"""Reinitialize learnable parameters."""
gain = nn.init.calculate_gain('relu')
if self._aggre_type == 'pool':
nn.init.xavier_uniform_(self.fc_pool.weight, gain=gain)
# if self._aggre_type == 'lstm':
# self.lstm.reset_parameters()
if self._aggre_type != 'gcn':
nn.init.xavier_uniform_(self.fc_self.weight, gain=gain)
nn.init.xavier_uniform_(self.fc_neigh.weight, gain=gain)
def forward(self, g, features):
'''
Inputs:
g:
The graph
features:
H^{l}, i.e. Node features with shape [num_nodes, features_per_node]
Returns:
rst:
H^{l+1}, i.e. Node embeddings of the l+1 layer (depth) with the
shape [num_nodes, hidden_per_node]
Variables:
msg_func:
Message function, i.e. What to be aggregated
(e.g. Sending node embeddings)
reduce_func:
Reduce function, i.e. How to aggregate
(e.g. Summing neighbor embeddings)
Notice: 'h' means node feature/embedding itself, 'm' means node's mailbox
'''
# create an independent instance of the graph to manipulate
g = g.local_var()
# H^{k-1}_{v}
h_self = features
# calculate H^{k}_{N(v)} in line 4 of the algorithm 1
# based on different aggregators
if self._aggre_type == 'mean':
g.ndata['h'] = features
msg_func = fn.copy_src('h', 'm')
reduce_func = fn.mean('m', 'neigh')
g.update_all(msg_func, reduce_func)
# h_neigh is H^{k}_{N(v)}
h_neigh = g.ndata.pop('neigh')
elif self._aggre_type == 'gcn':
# part of equation (2) in the paper
g.ndata['h'] = features
msg_func = fn.copy_src('h', 'm')
reduce_func = fn.sum('m', 'neigh')
g.update_all(msg_func, reduce_func)
h_neigh = g.ndata.pop('neigh')
# H^{k-1}_{v} U H^{k-1}_{u} in equation (2)
# g.ndata.pop('neigh') represents {H^{k-1}_{u} for u /belongs N(v)}
# g.dstdata['h'] represents {H^{k-1}_{v}}
h_neigh = h_neigh + g.ndata.pop('h')
# divide in_degrees: MEAN() operation in equation (2)
degs = g.in_degrees().to(features)
# Notice: h_neigh is more than H^{k}_{N(u)}
h_neigh = h_neigh / (degs.unsqueeze(-1) + 1)
elif self._aggre_type == 'pool':
g.ndata['h'] = F.relu(self.fc_pool(features))
msg_func = fn.copy_src('h', 'm')
reduce_func = fn.max('m', 'neigh')
g.update_all(msg_func, reduce_func)
# h_neigh is H^{k}_{N(v)}
h_neigh = g.ndata.pop('neigh')
else:
raise KeyError('Aggregator type {} not recognized.'.format(self._aggre_type))
# calculate H^{k}_{v} in line 5 of the algorithm 1
if self._aggre_type == 'gcn':
rst = self.fc_neigh(h_neigh)
else:
rst = self.fc_self(h_self) + self.fc_neigh(h_neigh)
# activation
if self._activation_func is not None:
rst = self._activation_func(rst)
# normalization in line 7 of the algorithm 1
# l2_norm = torch.norm(rst, p=2, dim=1)
# l2_norm = l2_norm.unsqueeze(1)
# rst = torch.div(rst, l2_norm)
return rst
class SAGEConv_bigraph(nn.Module):
'''
This part in algorithm 2 is between the line 10-14
** Suitbale for mini-batch graph training **
in_feats:
Input feature size.
** The layer is to be applied on a unidirectional bipartite graph,
'in_feats' specifies the input feature size on both the source
and destination nodes.
** If aggregator type is 'gcn', the feature size of source and destination nodes
are required to be the same.
out_feats:
Output feature size
aggregator_type:
Aggregator type to use (Mean, GCN, LSTM, Pool)
activation:
Applies an activation function to the updated node features
'''
def __init__(self, in_feats, out_feats, aggregator_type, activation=None):
super(SAGEConv_bigraph, self).__init__()
# return a pair of same element if in_feats is not a pair
self._in_src_feats, self._in_dst_feats = dgl.utils.expand_as_pair(in_feats)
self._out_feats = out_feats # "F" in the paper
self._activation_func = activation # e.g. ReLu
self._aggre_type = aggregator_type
# aggregator weight and bias
if aggregator_type != 'gcn':
# Notice: fc_self is for other aggregators to use in line 12 (Algorithm 2)
self.fc_self = nn.Linear(self._in_dst_feats, self._out_feats) # bias: Optional
if aggregator_type == 'pool':
self.fc_pool = nn.Linear(self._in_src_feats, self._in_src_feats)
self.relu = nn.ReLU()
# weight and bias in line 12 (Algorithm 2)
# GCN aggregator use this as well
self.fc_neigh = nn.Linear(self._in_src_feats, self._out_feats) # bias: Optional
self.reset_parameters()
def reset_parameters(self):
"""Reinitialize learnable parameters."""
gain = nn.init.calculate_gain('relu')
if self._aggre_type == 'pool':
nn.init.xavier_uniform_(self.fc_pool.weight, gain=gain)
# if self._aggre_type == 'lstm':
# self.lstm.reset_parameters()
if self._aggre_type != 'gcn':
nn.init.xavier_uniform_(self.fc_self.weight, gain=gain)
nn.init.xavier_uniform_(self.fc_neigh.weight, gain=gain)
def forward(self, g, features):
'''
Inputs:
g:
The graph
features:
H^{l}, BLOCK.SRC and BLOCK.DST features in tuple with shape
[N_{src}, D_{in_{src}] and [N_{dst}, D_{in_{dst}]
where 'D_{in}' is size of input feature
Returns:
rst:
H^{l+1}, Node embeddings of the l+1 layer (depth) with the
shape [N_{dst}, D_{out}]
Variables:
msg_func:
Message function, i.e. What to be aggregated
(e.g. Sending node embeddings)
reduce_func:
Reduce function, i.e. How to aggregate
(e.g. Summing neighbor embeddings)
Notice: 'h' means node feature/embedding itself, 'm' means node's mailbox
'''
# create an independent instance of the graph to manipulate
g = g.local_var()
# split (feature_src, feature_dst)
feat_src = features[0]
feat_dst = features[1]
# H^{k-1}_{u}
h_self = feat_dst
# calculate H^{k}_{N(u)} in line 11 of the algorithm 2
# different aggregators: aggregate neighbor (block.src) information
# in this case, g.srcdata and g.dstdata will be more convenient, they
# should be identical to g.ndata
if self._aggre_type == 'mean':
g.srcdata['h'] = feat_src
msg_func = fn.copy_src('h', 'm')
reduce_func = fn.mean('m', 'neigh')
g.update_all(msg_func, reduce_func)
# h_neigh is H^{k}_{N(u)}
h_neigh = g.dstdata['neigh']
elif self._aggre_type == 'gcn':
# check whether feat_src and feat_dst has the same shape
# otherwise we can't sum later
dgl.utils.check_eq_shape(features)
# part of equation (2) in the paper
g.srcdata['h'] = feat_src
g.dstdata['h'] = feat_dst
msg_func = fn.copy_src('h', 'm')
reduce_func = fn.sum('m', 'neigh')
g.update_all(msg_func, reduce_func)
h_neigh = g.dstdata['neigh']
# H^{k-1}_{v} U H^{k-1}_{u} in equation (2)
# g.dstdata['neigh'] represents BLOCK.DST with aggregation from SRC
# g.dstdata['h'] represents original BLOCK.DST without aggregation
h_neigh = h_neigh + g.dstdata['h']
# divide in_degrees: MEAN() operation in equation (2)
degs = g.in_degrees().to(feat_dst)
# Notice: h_neigh is more than H^{k}_{N(u)}
h_neigh = h_neigh / (degs.unsqueeze(-1) + 1)
elif self._aggre_type == 'pool':
# equation (3) in the paper
g.srcdata['h'] = self.relu(self.fc_pool(feat_src))
msg_func = fn.copy_src('h', 'm')
reduce_func = fn.max('m', 'neigh')
g.update_all(msg_func, reduce_func)
# h_neigh is H^{k}_{N(u)}
h_neigh = g.dstdata['neigh']
else:
raise KeyError('Aggregator type {} not recognized.'.format(self._aggre_type))
# calculate H^{k}_{v} in line 11 of the algorithm 2
# Notice: GCN aggregator is different than in others, see equation (2)
if self._aggre_type == 'gcn':
rst = self.fc_neigh(h_neigh)
else:
# line 12 of the algorithm 2
rst = self.fc_self(h_self) + self.fc_neigh(h_neigh)
# activation
if self._activation_func is not None:
rst = self._activation_func(rst)
# normalization in line 13 of the algorithm 2
# l2_norm = torch.norm(rst, p=2, dim=1)
# l2_norm = l2_norm.unsqueeze(1)
# rst = torch.div(rst, l2_norm)
return rst