-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimmviz.py
225 lines (178 loc) · 7.06 KB
/
timmviz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import streamlit as st
import numpy as np
import timm
import streamlit_toggle as tog
#from utils import model_size
import os
from PIL import Image
import urllib
import torchvision.transforms.functional as transform
import cv2
import pickle as pkl
from collections import defaultdict
import cmapy
import pandas as pd
def model_size(model):
""" Prints model info """
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
mb = (params * 32) / 2**23
gb = (params * 32) / 2**33
#return params, mb, gb
dictionary = {'Params': [params], 'MB': [f'{mb:.2f}'], 'GB': [f'{gb:.2f}']}
return pd.DataFrame(dictionary)
def to_255(x):
return (x - x.min()) / (x.max() - x.min()) * 255
@st.cache_data
def prepare_feature_maps(_model, _img, fname):
"""Prepare feature maps for visualization
Args:
_model (torch.nn.Module): model
_img (torch.Tensor): image
fname (str): filename to save feature maps
Returns:
None
"""
model = _model
img = _img
# Freeze model
for p in model.parameters():
p.requires_grad = False
# Move model to gpu and eval mode
model.to('cuda')
model.eval()
# Extract features
features = model(img.unsqueeze(0).to('cuda'))
# Moves images and model to cpu
img = img.cpu()
model = model.cpu()
all_layers_features = [x.cpu() for x in features]
# Save feature maps + image
with open(f'{fname}.pkl', 'wb') as f:
pkl.dump(all_layers_features+[img], f)
#return all_layers_features, img
return [x.shape[1] for x in all_layers_features]
@st.cache_data
def create_plots(fname, num_fmaps):
"""Create feature map plots
Args:
fname (str): filename of feature maps
num_fmaps (list): numbers of feature maps to plot for each layer
Returns:
None
"""
prefix = fname.split('/')[0]
# Load feature maps
with open(f'{fname}.pkl', 'rb') as f:
restore = pkl.load(f)
# Extract features and image
all_layers_features = restore[:-1]
img = restore[-1]
# normalize image to [0,255]
h,w = img.shape[-2], img.shape[-1]
img = img.squeeze(0).permute(1,2,0).numpy()
img = to_255(img).astype(np.uint8)
# Save plots
fnames = []
for i, features_layer_i in enumerate(all_layers_features):
features_layer_i = features_layer_i.numpy()
for j, feat_j in enumerate(features_layer_i[0][:num_fmaps[i]]):
feat_j = cv2.resize(feat_j, (w,h))
# normalize feature map to [0,255]
feat_j = to_255(feat_j).astype(np.uint8)
#feat_j = cv2.applyColorMap(feat_j, cv2.COLORMAP_JET)
feat_j = cv2.applyColorMap(feat_j, cmapy.cmap('coolwarm'))
heatmap = cv2.addWeighted(img, 0.35, feat_j, 0.65, 0)
fname = f'{prefix}/{i:03}_{j:03}.jpg'
cv2.imwrite(fname, heatmap)
fnames.append(fname)
return fnames
@st.cache_data
def load_model(model_name, pretrained):
"""Load model
Args:
model_name (str): model name
pretrained (bool): load pretrained weights
Returns:
model (torch.nn.Module): model
model_is_supported (bool): model is supported
"""
try:
return timm.create_model(model_name, pretrained=pretrained, features_only=True), True
except Exception as e:
if isinstance(e, urllib.error.URLError):
st.session_state.logs.append("Model weights can't be downloaded. Chcek your connection!")
else:
st.session_state.logs.append(f"Model not supported yet. It must implement features_only")
return None, False
###############################################################################
st.set_page_config(layout="wide")
# Global variables
if 'pretrained' not in st.session_state:
st.session_state.pretrained = False
if 'logs' not in st.session_state:
st.session_state.logs = []
if 'img_file_buffer' not in st.session_state:
st.session_state.img_file_buffer = []
###############################################################################
with st.sidebar:
st.markdown("# TimmViz")
model_name = st.sidebar.selectbox('Select your timm model', timm.list_models())
model, model_is_supported = load_model(model_name, st.session_state.pretrained)
if model_is_supported:
st.table(model_size(model))
_ = tog.st_toggle_switch(label="Pretrained",
key="pretrained",
default_value=False,
label_after = False,
inactive_color = '#D3D3D3',
active_color="#11567f",
track_color="#29B5E8"
)
if not model_is_supported:
st.markdown(f'# {st.session_state.logs[-1]}')
else:
col1, col2 = st.columns(2)
with col1:
#show_filters(tensor, selected_module)
# File uploader
st.markdown(f"## Upload picture")
img_file_buffer = st.file_uploader('')
if img_file_buffer:
st.session_state.img_file_buffer = img_file_buffer
with col2:
if st.session_state.img_file_buffer != []:
st.image(st.session_state.img_file_buffer, width=300, caption='Uploaded Image')
# Activation map visualization
if st.session_state.img_file_buffer != []:
tensor_image = transform.to_tensor(Image.open(st.session_state.img_file_buffer))
prefix = f'fmaps/{model_name}/pretrained_{st.session_state.pretrained}'
if not os.path.exists(prefix):
os.makedirs(prefix)
fname=f'{prefix}/{st.session_state.img_file_buffer.name.split(".")[0]}'
try:
len_fmaps = prepare_feature_maps(model, tensor_image, fname)
# slider to select number of feature maps
with st.sidebar:
num_fmaps = []
for i in range(len(len_fmaps)):
number = st.number_input(f'Number of activation maps in layer {i+1}', 1, len_fmaps[i], 10)
num_fmaps.append(number)
image_files = create_plots(fname, num_fmaps)
with st.container():
st.write("## Activation maps")
img_dict = defaultdict(list)
for i, image_path in enumerate(image_files):
layer = image_path.split('/')[-1].split('_')[0]
img_dict[layer].append(open(image_path, 'rb').read())
#feature = image_path.split('/')[-1].split('_')[1].split('.')[0]
#image_captions.append(f'{int(layer)}.{int(feature)}')
for k in img_dict.keys():
st.write(f'### Layer {int(k)+1}')
images = img_dict[k]
image_captions = [f'{i}' for i in range(len(images))]
st.image(images,width=200,caption=image_captions)
except Exception as e:
st.session_state.logs.append("The forward failed for some reason. Check your console!")
st.markdown(f"# {st.session_state.logs[-1]}")
print(e)
st.stop()