forked from facebookresearch/XLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim.py
270 lines (233 loc) · 10.1 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright (c) 2019-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import re
import math
import inspect
import torch
from torch import optim
class Adam(optim.Optimizer):
"""
Same as https://github.com/pytorch/pytorch/blob/master/torch/optim/adam.py,
without amsgrad, with step in a tensor, and states initialization in __init__.
It was important to add `.item()` in `state['step'].item()`.
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super().__init__(params, defaults)
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
state['step'] = 0 # torch.zeros(1)
state['exp_avg'] = torch.zeros_like(p.data)
state['exp_avg_sq'] = torch.zeros_like(p.data)
def __setstate__(self, state):
super().__setstate__(state)
def step(self, closure=None):
"""
Step.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# if group['weight_decay'] != 0:
# grad.add_(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
# denom = exp_avg_sq.sqrt().clamp_(min=group['eps'])
bias_correction1 = 1 - beta1 ** state['step'] # .item()
bias_correction2 = 1 - beta2 ** state['step'] # .item()
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
if group['weight_decay'] != 0:
p.data.add_(-group['weight_decay'] * group['lr'], p.data)
p.data.addcdiv_(-step_size, exp_avg, denom)
return loss
class AdamInverseSqrtWithWarmup(Adam):
"""
Decay the LR based on the inverse square root of the update number.
We also support a warmup phase where we linearly increase the learning rate
from some initial learning rate (`warmup-init-lr`) until the configured
learning rate (`lr`). Thereafter we decay proportional to the number of
updates, with a decay factor set to align with the configured learning rate.
During warmup:
lrs = torch.linspace(warmup_init_lr, lr, warmup_updates)
lr = lrs[update_num]
After warmup:
lr = decay_factor / sqrt(update_num)
where
decay_factor = lr * sqrt(warmup_updates)
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, warmup_updates=4000, warmup_init_lr=1e-7,
exp_factor=0.5):
super().__init__(
params,
lr=warmup_init_lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
)
# linearly warmup for the first warmup_updates
self.warmup_updates = warmup_updates
self.warmup_init_lr = warmup_init_lr
warmup_end_lr = lr
self.lr_step = (warmup_end_lr - warmup_init_lr) / warmup_updates
# then, decay prop. to the inverse square root of the update number
self.exp_factor = exp_factor
self.decay_factor = warmup_end_lr * warmup_updates ** self.exp_factor
# total number of updates
for param_group in self.param_groups:
param_group['num_updates'] = 0
def get_lr_for_step(self, num_updates):
if num_updates < self.warmup_updates:
return self.warmup_init_lr + num_updates * self.lr_step
else:
return self.decay_factor * (num_updates ** -self.exp_factor)
def step(self, closure=None):
super().step(closure)
for param_group in self.param_groups:
param_group['num_updates'] += 1
param_group['lr'] = self.get_lr_for_step(param_group['num_updates'])
class AdamCosineWithWarmup(Adam):
"""
Assign LR based on a cyclical schedule that follows the cosine function.
See https://arxiv.org/pdf/1608.03983.pdf for details.
We also support a warmup phase where we linearly increase the learning rate
from some initial learning rate (``--warmup-init-lr``) until the configured
learning rate (``--lr``).
During warmup::
lrs = torch.linspace(args.warmup_init_lr, args.lr, args.warmup_updates)
lr = lrs[update_num]
After warmup::
lr = lr_min + 0.5*(lr_max - lr_min)*(1 + cos(t_curr / t_i))
where ``t_curr`` is current percentage of updates within the current period
range and ``t_i`` is the current period range, which is scaled by ``t_mul``
after every iteration.
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, warmup_updates=4000, warmup_init_lr=1e-7,
min_lr=1e-9, init_period=1000000, period_mult=1, lr_shrink=0.75):
super().__init__(
params,
lr=warmup_init_lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
)
# linearly warmup for the first warmup_updates
self.warmup_updates = warmup_updates
self.warmup_init_lr = warmup_init_lr
warmup_end_lr = lr
self.lr_step = (warmup_end_lr - warmup_init_lr) / warmup_updates
# then, apply cosine scheduler
self.min_lr = min_lr
self.max_lr = lr
self.period = init_period
self.period_mult = period_mult
self.lr_shrink = lr_shrink
# total number of updates
for param_group in self.param_groups:
param_group['num_updates'] = 0
def get_lr_for_step(self, num_updates):
if num_updates < self.warmup_updates:
return self.warmup_init_lr + num_updates * self.lr_step
else:
t = num_updates - self.warmup_updates
if self.period_mult == 1:
pid = math.floor(t / self.period)
t_i = self.period
t_curr = t - (self.period * pid)
else:
pid = math.floor(math.log(1 - t / self.period * (1 - self.period_mult), self.period_mult))
t_i = self.period * (self.period_mult ** pid)
t_curr = t - (1 - self.period_mult ** pid) / (1 - self.period_mult) * self.period
lr_shrink = self.lr_shrink ** pid
min_lr = self.min_lr * lr_shrink
max_lr = self.max_lr * lr_shrink
return min_lr + 0.5 * (max_lr - min_lr) * (1 + math.cos(math.pi * t_curr / t_i))
def step(self, closure=None):
super().step(closure)
for param_group in self.param_groups:
param_group['num_updates'] += 1
param_group['lr'] = self.get_lr_for_step(param_group['num_updates'])
def get_optimizer(parameters, s):
"""
Parse optimizer parameters.
Input should be of the form:
- "sgd,lr=0.01"
- "adagrad,lr=0.1,lr_decay=0.05"
"""
if "," in s:
method = s[:s.find(',')]
optim_params = {}
for x in s[s.find(',') + 1:].split(','):
split = x.split('=')
assert len(split) == 2
assert re.match("^[+-]?(\d+(\.\d*)?|\.\d+)$", split[1]) is not None
optim_params[split[0]] = float(split[1])
else:
method = s
optim_params = {}
if method == 'adadelta':
optim_fn = optim.Adadelta
elif method == 'adagrad':
optim_fn = optim.Adagrad
elif method == 'adam':
optim_fn = Adam
optim_params['betas'] = (optim_params.get('beta1', 0.9), optim_params.get('beta2', 0.999))
optim_params.pop('beta1', None)
optim_params.pop('beta2', None)
elif method == 'adam_inverse_sqrt':
optim_fn = AdamInverseSqrtWithWarmup
optim_params['betas'] = (optim_params.get('beta1', 0.9), optim_params.get('beta2', 0.999))
optim_params.pop('beta1', None)
optim_params.pop('beta2', None)
elif method == 'adam_cosine':
optim_fn = AdamCosineWithWarmup
optim_params['betas'] = (optim_params.get('beta1', 0.9), optim_params.get('beta2', 0.999))
optim_params.pop('beta1', None)
optim_params.pop('beta2', None)
elif method == 'adamax':
optim_fn = optim.Adamax
elif method == 'asgd':
optim_fn = optim.ASGD
elif method == 'rmsprop':
optim_fn = optim.RMSprop
elif method == 'rprop':
optim_fn = optim.Rprop
elif method == 'sgd':
optim_fn = optim.SGD
assert 'lr' in optim_params
else:
raise Exception('Unknown optimization method: "%s"' % method)
# check that we give good parameters to the optimizer
expected_args = inspect.getargspec(optim_fn.__init__)[0]
assert expected_args[:2] == ['self', 'params']
if not all(k in expected_args[2:] for k in optim_params.keys()):
raise Exception('Unexpected parameters: expected "%s", got "%s"' % (
str(expected_args[2:]), str(optim_params.keys())))
return optim_fn(parameters, **optim_params)