forked from omron-sinicx/srsd-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbolic_regression.py
281 lines (243 loc) · 13.7 KB
/
symbolic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
This code is based on https://github.com/yoshitomo-matsubara/torchdistill/blob/main/examples/image_classification.py
"""
import argparse
import datetime
import os
import time
import numpy as np
import sympy
import torch
from torch import distributed as dist
from torch.backends import cudnn
from torch.nn import DataParallel
from torch.nn.parallel import DistributedDataParallel
from torchdistill.common import file_util, yaml_util, module_util
from torchdistill.common.constant import def_logger
from torchdistill.common.main_util import is_main_process, init_distributed_mode, load_ckpt, save_ckpt, set_seed
from torchdistill.core.distillation import get_distillation_box
from torchdistill.core.training import get_training_box
from torchdistill.datasets import util
from torchdistill.losses.single import get_single_loss
from torchdistill.misc.log import setup_log_file, SmoothedValue, MetricLogger
from torchdistill.models.registry import get_model
from torchdistill.optim.registry import get_optimizer, get_scheduler
from eq.conversion import sequence2model
from eq.eval import convert_pred_sequence_to_eqs, compute_edit_distance
from eq.tree import visualize_sympy_as_tree
from models.optim import customize_lr_config
from models.registry import get_symbolic_regression_model
logger = def_logger.getChild(__name__)
def get_argparser():
parser = argparse.ArgumentParser(description='PyTorch pipeline for symbolic regression models')
parser.add_argument('--config', required=True, help='yaml file path')
parser.add_argument('--device', default='cuda', help='device')
parser.add_argument('--log', help='log file path')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--seed', type=int, help='seed in random number generator')
parser.add_argument('-test_only', action='store_true', help='only test the models')
parser.add_argument('-estimate_coeff', action='store_true', help='estimate coefficients')
parser.add_argument('-student_only', action='store_true', help='test the student model only')
parser.add_argument('-log_config', action='store_true', help='log config')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('-adjust_lr', action='store_true',
help='multiply learning rate by number of distributed processes (world_size)')
return parser
def load_model(model_config, device):
model = get_symbolic_regression_model(model_config['name'], **model_config['params'])
if model is None:
repo_or_dir = model_config.get('repo_or_dir', None)
model = get_model(model_config['name'], repo_or_dir, **model_config['params'])
ckpt_file_path = model_config['ckpt']
load_ckpt(ckpt_file_path, model=model, strict=True)
return model.to(device)
def train_one_epoch(training_box, device, epoch, log_freq):
metric_logger = MetricLogger(delimiter=' ')
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value}'))
metric_logger.add_meter('sample/s', SmoothedValue(window_size=10, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
for sample_batch, target_values, target_sequences, true_eq_file_paths in \
metric_logger.log_every(training_box.train_data_loader, log_freq, header):
start_time = time.time()
sample_batch, target_values, target_sequences = \
sample_batch.to(device), target_values.to(device), target_sequences.to(device)
loss = training_box(sample_batch, target_sequences, supp_dict=None)
training_box.update_params(loss)
batch_size = sample_batch.shape[0]
metric_logger.update(loss=loss.item(), lr=training_box.optimizer.param_groups[0]['lr'])
metric_logger.meters['sample/s'].update(batch_size / (time.time() - start_time))
if (torch.isnan(loss) or torch.isinf(loss)) and is_main_process():
raise ValueError('The training loop was broken due to loss = {}'.format(loss))
def estimate_coefficients(pred_sequence, sample_batch, target_values, true_eq_file_path, coeff_estimate_config):
device = sample_batch.device
pred_model = sequence2model(pred_sequence[1:])
pred_model = pred_model.to(device)
skeleton_eq_str = pred_model.sympy_str()
logger.info(f'Skeleton: {skeleton_eq_str}')
pred_model.train()
optim_config = coeff_estimate_config['optimizer']
filters_params = optim_config.get('filters_params', True)
optimizer = get_optimizer(pred_model, optim_config['type'], optim_config['params'], filters_params)
scheduler_config = coeff_estimate_config.get('scheduler', None)
if scheduler_config is not None and len(scheduler_config) > 0:
lr_scheduler = get_scheduler(optimizer, scheduler_config['type'], scheduler_config['params'])
scheduling_step = scheduler_config.get('scheduling_step', 0)
else:
lr_scheduler = None
scheduling_step = None
criterion_config = coeff_estimate_config['criterion']
criterion = get_single_loss(criterion_config)
num_epochs = coeff_estimate_config['num_epochs']
best_loss_value = None
best_state_dict = None
sample_batch = sample_batch.squeeze(0).squeeze(-1)
target_values = target_values.squeeze(0)
for epoch in range(num_epochs):
pred_values = pred_model(sample_batch)
loss = criterion(pred_values, target_values)
loss.backward()
optimizer.step()
optimizer.zero_grad()
if lr_scheduler is not None and epoch != 0 and epoch % scheduling_step == 0:
lr_scheduler.step()
loss_value = loss.item()
if best_loss_value is None or loss_value < best_loss_value:
logger.info(f'Best loss {best_loss_value} -> {loss_value}')
best_loss_value = loss_value
best_state_dict = pred_model.state_dict()
pred_model.load_state_dict(best_state_dict)
try:
sympy_eq_str = pred_model.sympy_str()
logger.info(f'"{skeleton_eq_str}" -> "{sympy_eq_str}"')
pred_eq = sympy.sympify(sympy_eq_str)
except:
pred_eq = sympy.nan
pred_eq_output_dir_path = None if coeff_estimate_config is None \
else coeff_estimate_config.get('pred_eq_output', None)
if pred_eq_output_dir_path is not None:
pred_eq_output_file_path = os.path.join(pred_eq_output_dir_path, os.path.basename(true_eq_file_path))
file_util.save_pickle(pred_eq, pred_eq_output_file_path)
return pred_eq
def evaluate(model, data_loader, device, device_ids, distributed, log_freq=1000, title=None, header='Test:',
pred_tree_output_dir_path=None, true_tree_output_dir_path=None, coeff_estimate_config=None):
model.to(device)
if distributed:
model = DistributedDataParallel(model, device_ids=device_ids)
elif device.type.startswith('cuda'):
model = DataParallel(model, device_ids=device_ids)
if title is not None:
logger.info(title)
model.eval()
metric_logger = MetricLogger(delimiter=' ')
tree_index = 0
for sample_batch, target_values, true_eqs, true_eq_file_paths \
in metric_logger.log_every(data_loader, log_freq, header):
sample_batch = sample_batch.to(device, non_blocking=True)
target_values = target_values.to(device, non_blocking=True)
output = model(sample_batch)
if coeff_estimate_config is None:
pred_eqs = convert_pred_sequence_to_eqs(output['pred_symbols'])
else:
pred_eqs = [
estimate_coefficients(pred_sequence, sample_batch, target_values,
true_eq_file_path, coeff_estimate_config)
for pred_sequence, true_eq_file_path in zip(output['pred_symbols'], true_eq_file_paths)
]
if pred_tree_output_dir_path is not None:
for pred_eq, true_eq in zip(pred_eqs, true_eqs):
pred_file_path = os.path.join(pred_tree_output_dir_path, f'pred-{tree_index}.png')
visualize_sympy_as_tree(pred_eq, pred_file_path, ext='png', label=str(pred_eq))
if true_tree_output_dir_path is not None:
true_file_path = os.path.join(true_tree_output_dir_path, f'true-{tree_index}.png')
visualize_sympy_as_tree(true_eq, true_file_path, ext='png', label=str(true_eq))
tree_index += 1
edit_dist = compute_edit_distance(pred_eqs, true_eqs, normalizes=True)
logger.info('{}\t{}\t{}\t{}'.format(output['pred_symbols'][0], str(edit_dist),
str(true_eqs[0].evalf()), str(true_eqs[0])))
batch_size = sample_batch.shape[0]
metric_logger.meters['edit_dist'].update(edit_dist, n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
global_edit_dist = metric_logger.edit_dist.global_avg
logger.info(' * Normalized edit distance {:.4f}\n'.format(global_edit_dist))
return global_edit_dist
def train(teacher_model, student_model, dataset_dict, ckpt_file_path, device, device_ids, distributed, config, args):
logger.info('Start training')
train_config = config['train']
lr_factor = args.world_size if distributed and args.adjust_lr else 1
training_box = get_training_box(student_model, dataset_dict, train_config,
device, device_ids, distributed, lr_factor) if teacher_model is None \
else get_distillation_box(teacher_model, student_model, dataset_dict, train_config,
device, device_ids, distributed, lr_factor)
best_val_edit_dist = np.inf
optimizer, lr_scheduler = training_box.optimizer, training_box.lr_scheduler
if file_util.check_if_exists(ckpt_file_path):
best_val_edit_dist, _, _ = load_ckpt(ckpt_file_path, optimizer=optimizer, lr_scheduler=lr_scheduler)
log_freq = train_config['log_freq']
student_model_without_ddp = student_model.module if module_util.check_if_wrapped(student_model) else student_model
start_time = time.time()
for epoch in range(args.start_epoch, training_box.num_epochs):
training_box.pre_process(epoch=epoch)
train_one_epoch(training_box, device, epoch, log_freq)
val_edit_dist = evaluate(student_model, training_box.val_data_loader, device, device_ids, distributed,
log_freq=log_freq, header='Validation:')
if val_edit_dist < best_val_edit_dist and is_main_process():
logger.info('Best edit distance: {:.4f} -> {:.4f}'.format(best_val_edit_dist, val_edit_dist))
logger.info('Updating ckpt at {}'.format(ckpt_file_path))
best_val_edit_dist = val_edit_dist
save_ckpt(student_model_without_ddp, optimizer, lr_scheduler,
best_val_edit_dist, config, args, ckpt_file_path)
training_box.post_process()
if distributed:
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
training_box.clean_modules()
def main(args):
log_file_path = args.log
if is_main_process() and log_file_path is not None:
setup_log_file(os.path.expanduser(log_file_path))
distributed, device_ids = init_distributed_mode(args.world_size, args.dist_url)
logger.info(args)
cudnn.benchmark = True
set_seed(args.seed)
config = yaml_util.load_yaml_file(os.path.expanduser(args.config))
device = torch.device(args.device)
dataset_dict = util.get_all_datasets(config['datasets'])
# Update config with dataset size len(data_loader)
customize_lr_config(config, dataset_dict, args.world_size)
models_config = config['models']
teacher_model_config = models_config.get('teacher_model', None)
teacher_model =\
load_model(teacher_model_config, device) if teacher_model_config is not None else None
student_model_config =\
models_config['student_model'] if 'student_model' in models_config else models_config['model']
ckpt_file_path = student_model_config['ckpt']
student_model = load_model(student_model_config, device)
if args.log_config:
logger.info(config)
if not args.test_only:
train(teacher_model, student_model, dataset_dict, ckpt_file_path, device, device_ids, distributed, config, args)
student_model_without_ddp =\
student_model.module if module_util.check_if_wrapped(student_model) else student_model
load_ckpt(student_model_config['ckpt'], model=student_model_without_ddp, strict=True)
test_config = config['test']
test_data_loader_config = test_config['test_data_loader']
test_data_loader = util.build_data_loader(dataset_dict[test_data_loader_config['dataset_id']],
test_data_loader_config, distributed)
pred_tree_output_dir_path = test_config.get('pred_tree_output')
true_tree_output_dir_path = test_config.get('true_tree_output')
if not args.student_only and teacher_model is not None:
evaluate(teacher_model, test_data_loader, device, device_ids, distributed,
title='[Teacher: {}]'.format(teacher_model_config['name']))
coeff_estimate_config = config.get('coeff_estimate', None) if args.estimate_coeff else None
evaluate(student_model, test_data_loader, device, device_ids, distributed,
title='[Student: {}]'.format(student_model_config['name']),
pred_tree_output_dir_path=pred_tree_output_dir_path, true_tree_output_dir_path=true_tree_output_dir_path,
coeff_estimate_config=coeff_estimate_config)
if __name__ == '__main__':
argparser = get_argparser()
main(argparser.parse_args())