-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.py
80 lines (61 loc) · 2.13 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from Feynman.Functions import Feynman12, FunctionsJson
########## testing ##########
# f: q2*Ef
inputSize = 10000
X = np.random.uniform([1.0,1.0], [5.0,5.0], (inputSize,2))
q2 = X[:,0]
Ef = X[:,1]
# f: q2*Ef
f1 = Feynman12.calculate(q2,Ef)
jsonArr = np.array(FunctionsJson)
json = jsonArr[ [ row['EquationName']== 'Feynman12' for row in FunctionsJson ] ][0]
eq = eval(json['Formula_Lambda'])
f2 = [eq(row) for row in X]
print(f"two variants equal {(f1==f2).all()}")
########## without noise ##########
###### plotting ######
df = Feynman12.generate_df(size = inputSize, noise_level=0.3, include_original_target=True)
df_noNoise = df[['q2', 'Ef', 'F_without_noise']]
df_noNoise.columns = ['q2', 'Ef', 'F']
#pairplot to see distribution
g = sns.pairplot(df_noNoise)
plt.savefig('docs/fig/pairplot.png')
plt.clf()
#linechart so see prediction
df_noNoise = df_noNoise.sort_values(by=['q2', 'Ef',])
x = range(0,len(df_noNoise))
for col in list(df_noNoise.columns):
sns.lineplot(data = df_noNoise, x=x, y=col, label = col, alpha=0.7 )
plt.savefig('docs/fig/lineplot1.png')
plt.clf()
#linechart so see prediction
df_noNoise = df_noNoise.sort_values(by=[ 'Ef', 'q2',])
x = range(0,len(df_noNoise))
for col in list(df_noNoise.columns):
sns.lineplot(data = df_noNoise, x=x, y=col, label = col, alpha=0.7 )
plt.savefig('docs/fig/lineplot2.png')
plt.clf
########## with noise ##########
###### plotting ######
df_noise = df[['q2', 'Ef', 'F']]
#pairplot to see distribution
g = sns.pairplot(df_noise)
plt.savefig('docs/fig/pairplot_noisy.png')
plt.clf()
#linechart so see prediction
df_noise = df_noise.sort_values(by=['q2', 'Ef',])
x = range(0,len(df_noise))
for col in list(df_noise.columns):
sns.lineplot(data = df_noise, x=x, y=col, label = col, alpha=0.7 )
plt.savefig('docs/fig/lineplot1_noisy.png')
plt.clf()
#linechart so see prediction
df_noise = df_noise.sort_values(by=[ 'Ef', 'q2',])
x = range(0,len(df_noise))
for col in list(df_noise.columns):
sns.lineplot(data = df_noise, x=x, y=col, label = col, alpha=0.7 )
plt.savefig('docs/fig/lineplot2_noisy.png')