-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
248 lines (198 loc) · 10.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
import torch.nn as nn
import numpy as np
# Import from the IB-INN submodule
import inn_architecture
# This class overrides IB-INN submodule `GenerativeClassifier` class to add CelebA and FakeMNIST dataset.
class GenerativeClassifier(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
init_latent_scale = eval(self.args['model']['mu_init'])
weight_init = eval(self.args['model']['weight_init'])
self.dataset = self.args['data']['dataset']
self.ch_pad = eval(self.args['data']['pad_noise_channels'])
self.feed_forward = eval(self.args['ablations']['feed_forward_resnet'])
self.feed_forward_revnet = eval(self.args['ablations']['feed_forward_irevnet'])
if 'mnist' in self.dataset.lower():
self.dims = (28, 28)
self.input_channels = 1
self.ndim_tot = int(np.prod(self.dims))
self.n_classes = 10
elif self.dataset == 'celeba':
resolution = args.getint('data', 'resolution', fallback=64)
self.dims = (3 + self.ch_pad, resolution, resolution)
self.input_channels = 3 + self.ch_pad
self.ndim_tot = int(np.prod(self.dims))
self.n_classes = 2
elif self.dataset in ['CIFAR10', 'CIFAR100']:
self.dims = (3 + self.ch_pad, 32, 32)
self.input_channels = 3 + self.ch_pad
self.ndim_tot = int(np.prod(self.dims))
if self.dataset == 'CIFAR10':
self.n_classes = 10
else:
self.n_classes = 100
else:
raise ValueError(f"what is this dataset, {args['data']['dataset']}?")
self.inn = inn_architecture.constuct_inn(self)
mu_populate_dims = self.ndim_tot
init_scale = init_latent_scale / np.sqrt(2 * mu_populate_dims // self.n_classes)
self.mu = nn.Parameter(torch.zeros(1, self.n_classes, self.ndim_tot))
self.mu_empirical = eval(self.args['training']['empirical_mu'])
for k in range(mu_populate_dims // self.n_classes):
self.mu.data[0, :, self.n_classes * k : self.n_classes * (k+1)] = init_scale * torch.eye(self.n_classes)
self.phi = nn.Parameter(torch.zeros(self.n_classes))
self.trainable_params = list(self.inn.parameters())
self.trainable_params = list(filter(lambda p: p.requires_grad, self.trainable_params))
self.train_mu = eval(self.args['training']['train_mu'])
self.train_phi = eval(self.args['training']['train_mu'])
self.train_inn = True
optimizer = self.args['training']['optimizer']
for p in self.trainable_params:
p.data *= weight_init
self.trainable_params += [self.mu, self.phi]
base_lr = float(self.args['training']['lr'])
optimizer_params = [ {'params':list(filter(lambda p: p.requires_grad, self.inn.parameters()))},]
if self.train_mu:
optimizer_params.append({'params': [self.mu],
'lr': base_lr * float(self.args['training']['lr_mu']),
'weight_decay': 0.})
if optimizer == 'SGD':
optimizer_params[-1]['momentum'] = float(self.args['training']['sgd_momentum_mu'])
if optimizer == 'ADAM':
optimizer_params[-1]['betas'] = eval(self.args['training']['adam_betas_mu'])
if optimizer == 'AGGMO':
optimizer_params[-1]['betas'] = eval(self.args['training']['aggmo_betas_mu'])
if self.train_phi:
optimizer_params.append({'params': [self.phi],
'lr': base_lr * float(self.args['training']['lr_phi']),
'weight_decay': 0.})
if optimizer == 'SGD':
optimizer_params[-1]['momentum'] = float(self.args['training']['sgd_momentum_phi'])
if optimizer == 'ADAM':
optimizer_params[-1]['betas'] = eval(self.args['training']['adam_betas_phi'])
if optimizer == 'AGGMO':
optimizer_params[-1]['betas'] = eval(self.args['training']['aggmo_betas_phi'])
if optimizer == 'SGD':
self.optimizer = torch.optim.SGD(optimizer_params, base_lr,
momentum=float(self.args['training']['sgd_momentum']),
weight_decay=float(self.args['training']['weight_decay']))
elif optimizer == 'ADAM':
self.optimizer = torch.optim.Adam(optimizer_params, base_lr,
betas=eval(self.args['training']['adam_betas']),
weight_decay=float(self.args['training']['weight_decay']))
elif optimizer == 'AGGMO':
import aggmo
self.optimizer = aggmo.AggMo(optimizer_params, base_lr,
betas=eval(self.args['training']['aggmo_betas']),
weight_decay=float(self.args['training']['weight_decay']))
else:
raise ValueError(f'what is this optimizer, {optimizer}?')
def cluster_distances(self, z, y=None):
if y is not None:
mu = torch.mm(z.t().detach(), y.round())
mu = mu / torch.sum(y, dim=0, keepdim=True)
mu = mu.t().view(1, self.n_classes, -1)
mu = 0.005 * mu + 0.995 * self.mu.data
self.mu.data = mu.data
z_i_z_i = torch.sum(z**2, dim=1, keepdim=True) # batchsize x n_classes
mu_j_mu_j = torch.sum(self.mu**2, dim=2) # 1 x n_classes
z_i_mu_j = torch.mm(z, self.mu.squeeze().t()) # batchsize x n_classes
return -2 * z_i_mu_j + z_i_z_i + mu_j_mu_j
def mu_pairwise_dist(self):
mu_i_mu_j = self.mu.squeeze().mm(self.mu.squeeze().t())
mu_i_mu_i = torch.sum(self.mu.squeeze()**2, 1, keepdim=True).expand(self.n_classes, self.n_classes)
dist = mu_i_mu_i + mu_i_mu_i.t() - 2 * mu_i_mu_j
return torch.masked_select(dist, (1 - torch.eye(self.n_classes).cuda()).bool()).clamp(min=0.)
def forward(self, x, y=None, loss_mean=True):
if self.feed_forward:
return self.losses_feed_forward(x, y, loss_mean)
z = self.inn(x)
jac = self.inn.log_jacobian(run_forward=False)
log_wy = torch.log_softmax(self.phi, dim=0).view(1, -1)
if self.mu_empirical and y is not None and self.inn.training:
zz = self.cluster_distances(z, y)
else:
zz = self.cluster_distances(z)
losses = {'L_x_tr': (- torch.logsumexp(- 0.5 * zz + log_wy, dim=1) - jac ) / self.ndim_tot,
'logits_tr': - 0.5 * zz,
'jac': jac.mean() / self.ndim_tot}
log_wy = log_wy.detach()
if y is not None:
losses['L_cNLL_tr'] = (0.5 * torch.sum(zz * y.round(), dim=1) - jac) / self.ndim_tot
losses['L_y_tr'] = torch.sum((torch.log_softmax(- 0.5 * zz + log_wy, dim=1) - log_wy) * y, dim=1)
losses['acc_tr'] = torch.mean((torch.max(y, dim=1)[1]
== torch.max(losses['logits_tr'].detach(), dim=1)[1]).float())
if loss_mean:
for k,v in losses.items():
losses[k] = torch.mean(v)
return losses
def losses_feed_forward(self, x, y=None, loss_mean=True):
logits = self.inn(x)
losses = {'logits_tr': logits,
'L_x_tr': torch.zeros_like(logits[:,0])}
if y is not None:
ly = torch.sum(torch.log_softmax(logits, dim=1) * y, dim=1)
acc = torch.mean((torch.max(y, dim=1)[1]
== torch.max(logits.detach(), dim=1)[1]).float())
losses['L_y_tr'] = ly
losses['acc_tr'] = acc
losses['L_cNLL_tr'] = torch.zeros_like(ly)
if loss_mean:
for k,v in losses.items():
losses[k] = torch.mean(v)
return losses
def validate(self, x, y, eval_mode=True):
is_train = self.inn.training
if eval_mode:
self.inn.eval()
with torch.no_grad():
losses = self.forward(x, y, loss_mean=False)
l_x, class_nll, l_y, logits, acc = (losses['L_x_tr'].mean(),
losses['L_cNLL_tr'].mean(),
losses['L_y_tr'].mean(),
losses['logits_tr'],
losses['acc_tr'])
mu_dist = torch.mean(torch.sqrt(self.mu_pairwise_dist()))
if is_train:
self.inn.train()
return {'L_x_val': l_x,
'L_cNLL_val': class_nll,
'logits_val': logits,
'L_y_val': l_y,
'acc_val': acc,
'delta_mu_val': mu_dist}
def reset_mu(self, dataset):
mu = torch.zeros(1, self.n_classes, self.ndim_tot).cuda()
counter = 0
with torch.no_grad():
for x, l in dataset.train_loader:
x, y = x.cuda(), dataset.onehot(l.cuda(), 0.05)
z = self.inn(x)
mu_batch = torch.mm(z.t().detach(), y.round())
mu_batch = mu_batch / torch.sum(y, dim=0, keepdim=True)
mu_batch = mu_batch.t().view(1, self.n_classes, -1)
mu += mu_batch
counter += 1
mu /= counter
self.mu.data = mu.data
def sample(self, y, temperature=1., z=None):
if z is None: z = temperature * torch.randn(y.shape[0], self.ndim_tot).cuda()
mu = torch.sum(y.round().view(-1, self.n_classes, 1) * self.mu, dim=1)
return self.inn(z, rev=True)
def save(self, fname):
torch.save({'inn': self.inn.state_dict(),
'mu': self.mu,
'phi': self.phi,
'opt': self.optimizer.state_dict()}, fname)
def load(self, fname):
data = torch.load(fname)
data['inn'] = {k:v for k,v in data['inn'].items() if 'tmp_var' not in k}
self.inn.load_state_dict(data['inn'])
self.mu.data.copy_(data['mu'].data)
self.phi.data.copy_(data['phi'].data)
try:
pass
except:
print('loading the optimizer went wrong, skipping')