-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_seg.py
274 lines (232 loc) · 11.4 KB
/
train_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import json
import time
import datetime
import argparse
import torch
import torch.nn as nn
import torchvision
from cvm.utils import *
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch Segmentation Training')
# dataset
parser.add_argument('--data-dir', type=str, default='/datasets/PASCAL_VOC',
help='path to the segmentation dataset.')
parser.add_argument('--dataset', type=str, default='VOCSegmentation', metavar='NAME',
choices=list_datasets() + ['ImageNet'], help='dataset type.')
parser.add_argument('--workers', '-j', type=int, default=4, metavar='N',
help='number of data loading workers pre GPU. (default: 4)')
parser.add_argument('--batch-size', type=int, default=1, metavar='N',
help='mini-batch size, this is the total batch size of all GPUs. (default: 256)')
parser.add_argument('--crop-size', type=int, default=480)
parser.add_argument('--crop-padding', type=int, default=4, metavar='S')
parser.add_argument('--val-resize-size', type=int, default=520)
parser.add_argument('--val-crop-size', type=int, default=520)
# model
parser.add_argument('--model', type=str, default='seg/fcn_regnet_x_400mf', choices=list_models(),
help='type of model to use. (default: seg/fcn_regnet_x_400mf)')
parser.add_argument('--pretrained', action='store_true',
help='use pre-trained model. (default: false)')
parser.add_argument('--pretrained-backbone', action='store_true',
help='use pre-trained backbone. (default: false)')
parser.add_argument('--model-path', type=str, default=None)
parser.add_argument('--num-classes', type=int, default=21, metavar='N',
help='number of label classes')
parser.add_argument('--bn-eps', type=float, default=None)
parser.add_argument('--bn-momentum', type=float, default=None)
parser.add_argument('--aux-loss', action='store_true')
parser.add_argument('--cls-loss', action='store_true')
# optimizer
parser.add_argument('--optim', type=str, default='sgd', choices=['sgd', 'rmsprop'],
help='optimizer. (default: sgd)')
parser.add_argument('--weight-decay', '--wd', type=float, default=1e-4,
help='weight decay. (default: 1e-4)')
parser.add_argument('--no-bias-bn-wd', action='store_true',
help='whether to remove weight decay on bias, and beta/gamma for batchnorm layers.')
parser.add_argument('--rmsprop-decay', type=float, default=0.9, metavar='D',
help='decay of RMSprop. (default: 0.9)')
parser.add_argument('--rmsprop-epsilon', type=float,
default=1e-8, metavar='E')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='momentum of SGD. (default: 0.9)')
parser.add_argument('--nesterov', action='store_true',
help='nesterov of SGD. (default: false)')
parser.add_argument('--adam-betas', type=float,
nargs='+', default=[0.9, 0.999])
parser.add_argument("--clip-grad-norm", type=float, default=None, metavar='NORM',
help="the maximum gradient norm (default None)")
# learning rate
parser.add_argument('--lr', type=float, default=0.1,
help='initial learning rate. (default: 0.1)')
parser.add_argument('--lr-sched', type=str, default='cosine', choices=['step', 'cosine'],
help="learning rate scheduler mode, options are [cosine, step]. (default: cosine)")
parser.add_argument('--min-lr', type=float, default=1e-6)
parser.add_argument('--lr-decay-rate', type=float, default=0.1, metavar='RATE',
help='decay rate of learning rate. (default: 0.1)')
parser.add_argument('--lr-decay-epochs', type=int, default=0, metavar='N',
help='interval for periodic learning rate decays. (default: 0)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of total epochs to run. (default: 100)')
parser.add_argument('--warmup-epochs', type=int, default=0, metavar='N',
help='number of warmup epochs. (default: 0)')
# augmentation | regularization
parser.add_argument('--hflip', type=float, default=0.5, metavar='P')
parser.add_argument('--vflip', type=float, default=0.0, metavar='P')
parser.add_argument('--color-jitter', type=float, default=0., metavar='M')
parser.add_argument('--random-erasing', type=float,
default=0., metavar='P')
parser.add_argument('--dropout-rate', type=float, default=0., metavar='P',
help='dropout rate. (default: 0.0)')
parser.add_argument('--drop-path-rate', type=float, default=0., metavar='P',
help='drop path rate. (default: 0.0)')
parser.add_argument('--seed', type=int, default=0, metavar='S',
help='random seed (default: 0)')
parser.add_argument('--deterministic', action='store_true',
help='reproducibility. (default: false)')
parser.add_argument('--print-freq', default=10, type=int, metavar='N',
help='print frequency. (default: 10)')
parser.add_argument('--sync_bn', action='store_true',
help='use SyncBatchNorm. (default: false)')
parser.add_argument('--amp', action='store_true',
help='mixed precision. (default: false)')
parser.add_argument('--dali', action='store_true',
help='use nvidia dali.')
parser.add_argument('--dali-cpu', action='store_true',
help='runs CPU based version of DALI pipeline. (default: false)')
parser.add_argument('--output-dir', type=str,
default=f'logs/{datetime.date.today()}', metavar='DIR')
parser.add_argument('--validate', action='store_true')
return parser.parse_args()
def train(train_loader, model, criterion, optimizer, scheduler, scaler, epoch, args):
batch_time = AverageMeter()
losses = AverageMeter()
model.train()
end = time.time()
for i, (images, targets) in enumerate(train_loader):
optimizer.zero_grad(set_to_none=True)
with torch.amp.autocast(device_type='cuda', enabled=args.amp):
outputs = model(images)
loss = criterion(outputs['out'], targets)
if args.aux_loss:
loss += 0.5 * criterion(outputs['aux'], targets)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
losses.update(loss.item(), images.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 and i != 0:
logger.info(f'#{epoch:>3}[{i:>4}] t={batch_time.avg:>.3f}, '
f'lr={optimizer.param_groups[0]["lr"]:>.6f}, '
f'l={losses.avg:>.3f}')
if not os.path.exists('logs/voc'):
os.makedirs('logs/voc')
output = outputs['out'].argmax(dim=1)
targets[targets == 255] = 0
torchvision.utils.save_image(images[0], f'logs/voc/{i}_image.png', normalize=True)
torchvision.utils.save_image(output[0].float(), f'logs/voc/{i}_pred.png', normalize=True)
torchvision.utils.save_image(targets[0].float(), f'logs/voc/{i}_mask.png', normalize=True)
def validate(val_loader, model, args):
confmat = ConfusionMatrix(args.num_classes)
model.eval()
for images, targets in val_loader:
with torch.inference_mode():
outputs = model(images)
predictions = outputs['out']
confmat.update(predictions.argmax(1).flatten(), targets.flatten())
confmat.all_reduce()
logger.info(f'gloabal PA = {confmat.pa*100:>5.2f}, mean IoU = {confmat.mean_iou*100:>5.2f}')
if __name__ == '__main__':
assert torch.cuda.is_available(), 'CUDA IS NOT AVAILABLE!!'
args = parse_args()
init_distributed_mode(args)
torch.backends.cudnn.benchmark = True
if args.deterministic:
manual_seed(args.seed + args.local_rank)
torch.use_deterministic_algorithms(True)
logger = make_logger(
f'imagenet_{args.model}', f'{args.output_dir}/{args.model}',
rank=args.local_rank
)
if args.local_rank == 0:
logger.info(f'Args: \n{json.dumps(vars(args), indent=4)}')
model = create_model(
args.model,
num_classes=args.num_classes,
aux_loss=args.aux_loss,
cls_loss=args.cls_loss,
dropout_rate=args.dropout_rate,
drop_path_rate=args.drop_path_rate,
bn_eps=args.bn_eps,
bn_momentum=args.bn_momentum,
thumbnail=(args.crop_size < 128),
pretrained=args.pretrained,
pretrained_backbone=args.pretrained_backbone,
pth=args.model_path,
sync_bn=args.sync_bn,
distributed=args.distributed,
local_rank=args.local_rank
)
train_loader = create_loader(
root=args.data_dir,
is_training=True,
taskname='segmentation',
**(dict(vars(args)))
)
args.batch_size = 1
val_loader = create_loader(
root=args.data_dir,
is_training=False,
taskname='segmentation',
collate_fn=seg_collate_fn,
**(dict(vars(args)))
)
if args.validate:
validate(val_loader, model, args)
exit(0)
params_to_optimize = [
{"params": [p for p in model.module.backbone.parameters() if p.requires_grad]},
{"params": [p for p in model.module.decode_head.parameters() if p.requires_grad]},
]
if args.aux_loss:
params = [p for p in model.module.aux_head.parameters() if p.requires_grad]
params_to_optimize.append({"params": params, "lr": args.lr * 10})
optimizer = create_optimizer(args.optim, params_to_optimize, **dict(vars(args)))
criterion = nn.CrossEntropyLoss(ignore_index=255)
scaler = torch.amp.GradScaler(enabled=args.amp)
scheduler = create_scheduler(
args.lr_sched,
optimizer,
len(train_loader),
**(dict(vars(args)))
)
if args.local_rank == 0:
logger.info(f'Model: \n{model}')
if not args.dali and isinstance(train_loader.dataset, (torchvision.datasets.VisionDataset)):
logger.info(f'Training: \n{train_loader.dataset.transforms}')
logger.info(f'Validation: \n{val_loader.dataset.transforms}')
logger.info(f'Optimizer: \n{optimizer}')
logger.info(f'Criterion: {criterion}')
logger.info(f'Scheduler: {scheduler}')
logger.info(f'Steps/Epoch: {len(train_loader)}')
benchmark = Benchmark()
for epoch in range(0, args.epochs):
train(
train_loader,
model,
criterion,
optimizer,
scheduler,
scaler,
epoch,
args
)
validate(val_loader, model, args)
train_loader.reset()
val_loader.reset()
if args.rank == 0 and epoch > (args.epochs - 10):
model_name = f'{args.output_dir}/{args.model}/{epoch:0>3}_{time.time()}.pth'
torch.save(model.module.state_dict(), model_name)
logger.info(f'Saved: {model_name}!')
logger.info(f'Total time: {benchmark.elapsed():>.3f}s')