-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconvnext.py
145 lines (120 loc) · 4.83 KB
/
convnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
'''
paper:
[ConvNeXt] A ConvNet for the 2020s(https://arxiv.org/abs/2201.03545)
official code :
https://github.com/facebookresearch/ConvNeXt/blob/dcb928723662a1289d31190d09d82378b57b810a/models/convnext.py
'''
import torch
import torch.nn as nn
from .ops import blocks
from .utils import export, config, load_from_local_or_url
from typing import Any, OrderedDict, List
class ConvNetBlock(nn.Module):
def __init__(
self,
dim: int,
kernel_size: int = 7,
padding: int = 3,
survival_prob: float = 0.0,
layer_scale: float = 1e-6
):
super().__init__()
self.branch1 = nn.Sequential(
blocks.DepthwiseConv2d(dim, dim, kernel_size, padding=padding, bias=True),
blocks.Permute([0, 2, 3, 1]),
nn.LayerNorm(dim, eps=1e-6),
nn.Linear(dim, 4 * dim),
nn.GELU(),
nn.Linear(4 * dim, dim),
blocks.Permute([0, 3, 1, 2]),
blocks.Scale(dim, layer_scale),
blocks.StochasticDepth(survival_prob)
)
self.branch2 = nn.Identity()
self.combine = blocks.Combine('ADD')
def forward(self, x):
return self.combine([self.branch1(x), self.branch2(x)])
class DownsamplingBlock(nn.Sequential):
def __init__(
self,
inp: int,
oup: int
):
super().__init__(
blocks.LayerNorm2d(inp, eps=1e-6),
nn.Conv2d(inp, oup, kernel_size=2, stride=2)
)
@export
class ConvNeXt(nn.Module):
def __init__(
self,
in_channels: int = 3,
num_classes: int = 1000,
layers: List[int] = [3, 3, 9, 3],
dims: List[int] = [96, 192, 384, 768],
drop_path_rate: float = 0.2,
layer_scale: float = 1e-6,
thumbnail: bool = False,
**kwargs: Any
):
super().__init__()
FRONT_S = 1 if thumbnail else 4
self.features = nn.Sequential(OrderedDict([
('stem', blocks.Stage(
nn.Conv2d(in_channels, dims[0], kernel_size=4, stride=FRONT_S),
blocks.LayerNorm2d(dims[0], eps=1e-6)
))
]))
survival_probs = [1 - x.item() for x in torch.linspace(0, drop_path_rate, sum(layers))]
for i in range(len(layers)):
stage = blocks.Stage([
ConvNetBlock(dims[i], survival_prob=survival_probs[sum(layers[:i]) + j], layer_scale=layer_scale)
for j in range(layers[i])]
)
if i < 3:
stage.append(DownsamplingBlock(dims[i], dims[i+1]))
self.features.add_module(f'stage{i + 1}', stage)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
blocks.LayerNorm2d(dims[-1], eps=1e-6),
nn.Flatten(1),
nn.Linear(dims[-1], num_classes)
)
def forward(self, x):
x = self.features(x)
x = self.pool(x)
x = self.classifier(x)
return x
@export
@config(url='https://github.com/ffiirree/cv-models/releases/download/v0.1.2-convnext-weights/torch-convnext_t-98aeea18.pth')
def convnext_t(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
model = ConvNeXt(layers=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
@export
@config(url='https://github.com/ffiirree/cv-models/releases/download/v0.1.2-convnext-weights/torch-convnext_s-0ebda7c5.pth')
def convnext_s(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
model = ConvNeXt(layers=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
@export
@config(url='https://github.com/ffiirree/cv-models/releases/download/v0.1.2-convnext-weights/torch-convnext_b-1e0fb038.pth')
def convnext_b(pretrained: bool = False, in_22k=False, pth: str = None, progress: bool = True, **kwargs: Any):
model = ConvNeXt(layers=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
@export
def convnext_l(pretrained: bool = False, in_22k=False, pth: str = None, progress: bool = True, **kwargs: Any):
model = ConvNeXt(layers=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
@export
def convnext_xl(pretrained: bool = False, in_22k=False, pth: str = None, progress: bool = True, **kwargs: Any):
model = ConvNeXt(layers=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model