-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbenchmark.py
60 lines (45 loc) · 1.77 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import argparse
import torch
import time
from cvm.utils import create_model
class InferenceBenchmarkRunner():
def __init__(self, model, input, device='cuda', amp=False) -> None:
self.model = model
self.input = input
self.device = device
self.amp = amp
self.model = model.to(self.device)
self.model.eval()
self.input = input.to(self.device)
def timestamp(self, sync=False):
if sync and self.device == 'cuda':
torch.cuda.synchronize(device=self.device)
return time.perf_counter()
def infer(self):
start = self.timestamp()
with torch.amp.autocast(device_type='cuda', enabled=self.amp):
output = self.model(self.input)
end = self.timestamp(True)
return end - start
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--model', '-m', type=str)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--amp', action='store_true')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()
print(args)
model = create_model(args.model)
input = torch.randn(args.batch_size, 3, 224, 224)
runner = InferenceBenchmarkRunner(model, input, args.device, args.amp)
with torch.no_grad():
for _ in range(50):
runner.infer()
total_step = 0
run_start = runner.timestamp()
for i in range(50):
delta_fwd = runner.infer()
total_step += delta_fwd
run_end = runner.timestamp(True)
run_elapsed = run_end - run_start
print(f'Inference benchmark: {round(50 / run_elapsed, 2):.2f} batches/s, {round(1000 * total_step / 50, 2)} ms')