-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
24 lines (14 loc) · 891 Bytes
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, DataCollatorForLanguageModeling, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("FelixChao/vicuna-7B-chemical")
model = AutoModelForCausalLM.from_pretrained("FelixChao/vicuna-7B-chemical",device_map="auto")
streamer = TextStreamer(tokenizer,skip_prompt=True,skip_special_token=True)
def generate(index):
example_text = "Who are you?"
print("Question:")
print(example_text)
encoding = tokenizer(example_text, return_tensors="pt").to("cuda:0")
output = model.generate(input_ids=encoding.input_ids,streamer=streamer,attention_mask=encoding.attention_mask, max_new_tokens=512, do_sample=True, eos_token_id=tokenizer.eos_token_id)
predict = tokenizer.decode(output[0], skip_special_tokens=True)
predict = predict[len(example_text)+1:]
print()
generate(0)