-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun.py
80 lines (59 loc) · 2.53 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from utils.noise import GaussianNoise
from utils.train_utils import *
from utils.all_models import *
import torch
# try to use gpu
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
print("Using: " + device)
# set randomness
np.random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
"""
Exemplary file to run experiments
=================================
The example runs some experiments that were evaluated for the paper.
Executing all runs required for complete reproduction takes quite some time. We provide results for seed=0 in the
res/model folder.
You can define your own parameterizations of the models as in the utils.all_models file and use them here,
e.g. changing the hidden layer size of NA-ALISTA.
All experiments are executed on a GPU if available.
Expected duration using a GPU for one run of NA_ALISTA, n=1000, k=16, noise=40db with the default settings below
will be approximately one hour (400 epochs).
"""
model_dir = 'res/models/'
# Default settings for reproducing our experiments.
m = 250 # measurements
s = 50 # sparsity
lr = 0.2 * 10e-4 # learning rate
for model_func in [NA_ALISTA_UR_128, ALISTA_AT, ALISTA, FISTA, ISTA, AGLISTA, NA_ALISTA_U_128, NA_ALISTA_R_128]:
for k in [10, 12, 14, 16]: # number of iterations that the ISTA-style method is executed
epoch = 100 + 20 * k
for n in [750, 500, 1000]: # input size
for noisename, noisefn in [["GaussianNoise40", GaussianNoise(40)], ["GaussianNoise20", GaussianNoise(20)]]:
# apply the p-trick
p = (np.linspace((s * 1 * 1.2) // k, s * 1 * 1.2, k)).astype(int)
params = {
'model': model_func.__name__,
'm': m,
's': s,
'k': k,
'noise': noisename,
'n': n,
}
# filename for saving, do not change if you intend to use plot_results.ipynb
name = '__'.join([f"{k}={v}" for k, v in params.items()])
print(f"Running: {name}")
# trains and saves model along with some training metrics
train_model(m=m, n=n, s=s, k=k, p=p,
model_fn=model_func,
noise_fn=noisefn,
epochs=epoch,
initial_lr=lr,
name=name,
model_dir=model_dir)
print("Done.")