-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFRparaSkewNormal.asv
433 lines (259 loc) · 13.6 KB
/
FRparaSkewNormal.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
% v24112016
%
%
% This script takes binding a feature condition for faces stimulus during
% retrieval stage and calculate MI using Skewness technique.
% The last 512 samples are selected for the analysis.
% Thi script works toghether with Skew fit R script
%
% It is prepeared for n electrodes analysis using random electrodes
% or pre defined electrodes
% It can do Normal, trial shuffle or data shuffle run
%
% Adapted by Fabricio Baglivo 2016 from Sergio Lew script.
clear all
close all
clc
electrode_run_type='test'; %'random_electrodes'; %selected_electrodes
data_run_type= 'data_shuffle'; %'normal';%trial_shuffle %data_shuffle
electrode_number=90;
electrode_selected_number=10;
electrodes=[1 11 17 21 30 45 52]; %Case of selected electrodes
stage='PostRetention'
load(['P12/' stage '.mat']);
BindinERPs_RED=cond(1).data(:,512:end,:);
FeaturesERPs_RED=cond(2).data(:,512:end,:);
nUnits=size(BindinERPs_RED,1);
setenv('PATH', [getenv('PATH') ';C:\Program Files\R\R-3.3.2\bin\']);
system('rm CSV/*');
%%
trials=size(BindinERPs_RED,3);
for t=1
u_high=0.9; %Features
b_high=0.3;
d_high=0.1;
u_low=t/10; %Binding
b_low=0.3;
d_low=0.1;
switch electrode_run_type
case 'random_electrodes'
switch data_run_type
case 'normal'
ok=0;
while ok==0
vector=randperm(electrode_number);
selection=vector(1:electrode_selected_number);
for iter=1:trials
Bind(iter,:)=squeeze(mean(BindinERPs_RED(selection,:,iter),2));
Feat(iter,:)=squeeze(mean(FeaturesERPs_RED(selection,:,iter),2));
end
%Test independence bewteen signals
if (rank(Bind)==electrode_selected_number) && (rank(Feat)==electrode_selected_number);ok=1;end;
end
case 'trial_shuffle'
ok=0;
while ok==0
vector=randperm(electrode_number);
selection=vector(1:electrode_selected_number);
for iter=1:trials
Bind(iter,:)=squeeze(mean(BindinERPs_RED(selection,:,iter),2));
Feat(iter,:)=squeeze(mean(FeaturesERPs_RED(selection,:,iter),2));
end
if (rank(Bind)==10) && (rank(Feat)==10);ok=1;end;
end
%mix codition: Trial permutation
Complete=[Bind' Feat']';
idx=randperm(trials);
Complete_Shuffle=Complete(idx,:);
Bind=Complete(1:trials/2,:);
Feat=Complete(trials/2+1:trials,:);
case 'data_shuffle'
%data shuffle
shufflevect=randperm(size(cond(1).data,2));
B=cond(1).data(:,shufflevect,:);
shufflevect=randperm(size(cond(2).data,2));
F=cond(1).data(:,shufflevect,:);
BindinERPs_RED=B(:,512:end,:);
FeaturesERPs_RED=F(:,512:end,:);
ok=0;
while ok==0
vector=randperm(electrode_number);
selection=vector(1:electrode_selected_number);
for iter=1:trials
Bind(iter,:)=squeeze(mean(BindinERPs_RED(selection,:,iter),2));
Feat(iter,:)=squeeze(mean(FeaturesERPs_RED(selection,:,iter),2));
end
%Test independence bewteen signals
if (rank(Bind)==electrode_selected_number) && (rank(Feat)==electrode_selected_number);ok=1;end;
end
end
case 'selected_electrodes'
electrode_selected_number=size(electrodes,2)
selection=electrodes;
switch data_run_type
case 'normal'
for iter=1:trials
Bind(iter,:)=squeeze(mean(BindinERPs_RED(selection,:,iter),2));
Feat(iter,:)=squeeze(mean(FeaturesERPs_RED(selection,:,iter),2));
end
%Test independence bewteen signals
if (rank(Bind)==size(Bind,2)) && (rank(Feat)==size(Feat,2))
ok=1;
else
error('Non-independent data matrix');
end
case 'trial_shuffle'
for iter=1:trials
Bind(iter,:)=squeeze(mean(BindinERPs_RED(selection,:,iter),2));
Feat(iter,:)=squeeze(mean(FeaturesERPs_RED(selection,:,iter),2));
end
if (rank(Bind)==size(Bind,2)) && (rank(Feat)==size(Feat,2))
ok=1;
else
error('Non-independent data matrix');
end
%mix codition: Trial permutation
Complete=[Bind' Feat']';
idx=randperm(trials);
Complete_Shuffle=Complete(idx,:);
Bind=Complete(1:trials/2,:);
Feat=Complete(trials/2+1:trials,:);
case 'data_shuffle'
%data shuffle
shufflevect=randperm(size(cond(1).data,2));
B=cond(1).data(:,shufflevect,:);
shufflevect=randperm(size(cond(2).data,2));
F=cond(1).data(:,shufflevect,:);
BindinERPs_RED=B(:,512:end,:);
FeaturesERPs_RED=F(:,512:end,:);
for iter=1:trials
Bind(iter,:)=squeeze(mean(BindinERPs_RED(selection,:,iter),2));
Feat(iter,:)=squeeze(mean(FeaturesERPs_RED(selection,:,iter),2));
end
if (rank(Bind)==size(Bind,2)) && (rank(Feat)==size(Feat,2))
ok=1;
else
error('Non-independent data matrix');
end
end
case 'test'
clear BindinERPs_RED FeaturesERPs_RED
electrode_number=2;
electrode_selected_number=2;
%Bind
tipo='low_conenction';
u=u_low;
b=b_low;d=d_low; % symetrical system
signal=henongen_func(u,b,d,tipo);
signal(:,1)=signal(:,1)-mean(signal(:,1));
signal(:,2)=signal(:,1)-mean(signal(:,2));
for i=1:65%ceil(size(signal,1)/512)-1
BindinERPs_RED(:,:,i)=signal((i-1)*512+1:i*512,:)';
Bind(i,:)=squeeze(mean(BindinERPs_RED(:,:,i),2));
end
%FEAT
tipo='hig_conenction';
u=u_high;
b=b_high;d=d_high; % Symetrical system
signal=henongen_func(u,b,d,tipo);
for i=1:65%ceil(size(signal,1)/512)-1
FeaturesERPs_RED(:,:,i)=signal((i-1)*512+1:i*512,:)';
Feat(i,:)=squeeze(mean(FeaturesERPs_RED(:,:,i),2));
end
end
% FIT vector:
%
% n -> mean values
% sum([1:1:electrode_selected_number]) -> Omega Matrix
% n -> Aplha vector
% 1 -> likelihood
fit_size=2*electrode_selected_number+sum([1:1:electrode_selected_number])+1;
%%
csvwrite(['CSV/Binding.csv'],Bind);
csvwrite(['CSV/Features.csv'],Feat);
Complete=[Bind' Feat'];
csvwrite(['CSV/Complete.csv'],Complete');
csvwrite(['CSV/FitSize.csv'],fit_size);
%%
%!unset DYLD_LIBRARY_PATH; Rscript skewNromalFitBind.R
%%
!Rscript skewNromalFitBind.R
snParam = csvread('skewNromalFitedDataBind.csv');
% snParam(snParam==-999999)=NaN;
!Rscript skewNromalFitFeat.R
snParamBind = csvread('skewNromalFitedDataFeat.csv');
% snParamBind(snParam==-999999)=NaN;
!Rscript skewNromalFit.R
snParamFeat = csvread('skewNromalFitedData.csv');
% snParamFeat(snParamGO==-999999)=NaN;
%%
for n=1:size(snParam,1)
alfainit=electrode_selected_number+sum([1:1:electrode_selected_number])+1;
alfaend=alfainit+electrode_selected_number-1;
alfa=snParam(n,alfainit:alfaend);
init=electrode_selected_number+1;
for i=1:electrode_selected_number %for 10 channels
l=electrode_selected_number-i ;% #components
omega(i,i:electrode_selected_number)=snParam(1,init:(init+l));
omega(i:electrode_selected_number,i)=snParam(1,init:(init+l));
init=(init+l+1);
end
M=100000;
a=randn(100000,1);
b=randn(100000,1);
W(find(sqrt(alfa*alfa')*a>b))=a(find(sqrt(alfa*alfa')*a>b));
W(find(sqrt(alfa*alfa')*a<=b))=-a(find(sqrt(alfa*alfa')*a<=b));
H(n) = 1/2*log((det(omega))) + 1 + log(2*pi) - mean(2*log(normcdf(sqrt(alfa*alfa')*W)));
%BIND
alfaBind=snParamBind(n,alfainit:alfaend);
init=electrode_selected_number+1;
for i=1:electrode_selected_number
l=electrode_selected_number-i ;% #components
omegaBind(i,i:electrode_selected_number)=snParamBind(1,init:(init+l));
omegaBind(i:electrode_selected_number,i)=snParamBind(1,init:(init+l));
init=(init+l+1);
end
M=100000;
a=randn(100000,1);
b=randn(100000,1);
W(find(sqrt(alfaBind*alfaBind')*a>b))=a(find(sqrt(alfaBind*alfaBind')*a>b));
W(find(sqrt(alfaBind*alfaBind')*a<=b))=-a(find(sqrt(alfaBind*alfaBind')*a<=b));
HBind(n) = 1/2*log((det(omegaBind))) + 1 + log(2*pi) - mean(2*log(normcdf(sqrt(alfaBind*alfaBind')*W)));
%FEAT
alfaFeat=snParamFeat(n,alfainit:alfaend);
init=electrode_selected_number+1;
for i=1:electrode_selected_number %for 10 channels
l=electrode_selected_number-i ;% #components
omegaFeat(i,i:electrode_selected_number)=snParamFeat(1,init:(init+l));
omegaFeat(i:electrode_selected_number,i)=snParamFeat(1,init:(init+l));
init=(init+l+1);
end
M=100000;
a=randn(100000,1);
b=randn(100000,1);
W(find(sqrt(alfaFeat*alfaFeat')*a>b))=a(find(sqrt(alfaFeat*alfaFeat')*a>b));
W(find(sqrt(alfaFeat*alfaFeat')*a<=b))=-a(find(sqrt(alfaFeat*alfaFeat')*a<=b));
HFeat(n) = 1/2*log((det(omegaFeat))) + 1 + log(2*pi) - mean(2*log(normcdf(sqrt(alfaFeat*alfaFeat')*W)));
end
MI(t)=H - 1/2*HFeat - 1/2*HBind
HH(t)=H;
HHf(t)=HFeat;
HHb(t)=HBind;
end
%%
save('Mat/Aasimetric.mat','HH','HHf','HHb');
%%
figure
subplot(1,2,1)
bar([H HBind HFeat],0.5)
set(gca,'xticklabels',{'H';'Hnc';'Hc'})
grid on
subplot(1,2,2)
bar(MI)
set(gca,'xticklabels',{'MI'})
figure;plot(Bind);xlabel('Low Connection')
figure;plot(Feat);xlabel('High Connection')
figure;plot(Feat);xlabel('High Connection')
figure;plot(Feat);xlabel('High Connection')
figure;plot(Feat);xlabel('High Connection')
figure;plot(Feat);xlabel('High Connection')