forked from ubombar/super-resolution-srrnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilv2.py
94 lines (72 loc) · 2.59 KB
/
utilv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import numpy as np
import gc
import PIL.Image as Image
import torchvision
import os
import math
import matplotlib.pyplot as plt
import random
import datetime
def conver_to_pilimage(X):
return torchvision.transforms.ToPILImage()(X)
def conver_to_tensor(X):
return torchvision.transforms.ToTensor()(X)
def display_in_plot(original, downscaled, upscaled, size=18):
original_array = np.array(conver_to_pilimage(original[0]))
downscaled_array = np.array(conver_to_pilimage(downscaled[0]))
upscaled_array = np.array(conver_to_pilimage(upscaled[0]))
_, axees = plt.subplots(1, 3, figsize=(size, 3 * size))
axees[0].set_title('Original Image')
axees[1].set_title('Downscaled Image')
axees[2].set_title('Upscaled Image (by SRResNet)')
'''
for i in range(3):
axees[i].set_xlim([0, 1])
axees[i].set_ylim([0, 1])
'''
axees[0].imshow(original_array)
axees[1].imshow(downscaled_array)
axees[2].imshow(upscaled_array)
del original_array
del downscaled_array
del upscaled_array
def demonstrate(image_path, model):
original, downscaled = get_tensor(image_path)
with torch.no_grad():
upscaled = torch.tensor(model(downscaled))
display_in_plot(original, downscaled, upscaled)
class DataIter():
def __init__(self, folder, sc1=2, sc2=4):
self.__folder = folder
self.__names = list(os.listdir(folder))
self.__i = 0
self.__sc1 = sc1
self.__sc2 = sc2
random.shuffle(self.__names)
def __len__(self):
return len(self.__names)
def __iter__(self):
self.__i = 0
return self
def __next__(self):
if self.__i >= len(self): raise StopIteration
self.__i += 1
return get_tensor(
os.path.join(self.__folder, self.__names[self.__i - 1]),
self.__sc1,
self.__sc2)
def get_tensor(image_name, sc1=2, sc2=2):
with Image.open(image_name) as image:
tensor = conver_to_tensor(image).float().unsqueeze(0)
tensor = torch.as_tensor(tensor[:,:,::sc1,::sc1])
del image
return_tuple = (tensor, torch.tensor(tensor[:,:,::sc2,::sc2]))
return return_tuple
def save_instance(model, loss_list, depth, block):
current_dtime = str(datetime.datetime.now().strftime("%Y_%m_%d_%H:%M:%S"))
model_name = 'checkpoints/model_{}_d{}_b{}.model'.format(current_dtime, depth, block)
txt_name = 'checkpoints/logs/log_{}.txt'.format(current_dtime)
torch.save(model, model_name)
with open(txt_name, 'a+') as txt:
txt.write(str(loss_list))