forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigure
executable file
·285 lines (248 loc) · 9.95 KB
/
configure
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env bash
DO_NOT_SUBMIT_WARNING="Unofficial setting. DO NOT SUBMIT!!!"
## Verify that the submodule google/protobuf is available
# TODO(cais): Remove this check once protobuf is no longer depended upon
if [[ ! -f "google/protobuf/protobuf.bzl" ]]; then
echo "ERROR: It appears that the required submodule google/protobuf is not "\
"available in this TensorFlow git clone."
echo "Please be sure to use the --recurse-submodules flag when performing "\
"git clone of TensorFlow."
exit 1
fi
## Set up python-related environment settings
while true; do
fromuser=""
if [ -z "$PYTHON_BIN_PATH" ]; then
default_python_bin_path=$(which python)
read -p "Please specify the location of python. [Default is $default_python_bin_path]: " PYTHON_BIN_PATH
fromuser="1"
if [ -z "$PYTHON_BIN_PATH" ]; then
PYTHON_BIN_PATH=$default_python_bin_path
fi
fi
if [ -e "$PYTHON_BIN_PATH" ]; then
break
fi
echo "Invalid python path. ${PYTHON_BIN_PATH} cannot be found" 1>&2
if [ -z "$fromuser" ]; then
exit 1
fi
PYTHON_BIN_PATH=""
# Retry
done
## Find swig path
if [ -z "$SWIG_PATH" ]; then
SWIG_PATH=`type -p swig 2> /dev/null`
fi
if [[ ! -e "$SWIG_PATH" ]]; then
echo "Can't find swig. Ensure swig is in \$PATH or set \$SWIG_PATH."
exit 1
fi
echo "$SWIG_PATH" > tensorflow/tools/swig/swig_path
# Invoke python_config and set up symlinks to python includes
(./util/python/python_config.sh --setup "$PYTHON_BIN_PATH";) || exit -1
## Set up Cuda-related environment settings
while [ "$TF_NEED_CUDA" == "" ]; do
read -p "Do you wish to build TensorFlow with GPU support? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "GPU support will be enabled for TensorFlow"; TF_NEED_CUDA=1;;
[Nn]* ) echo "No GPU support will be enabled for TensorFlow"; TF_NEED_CUDA=0;;
"" ) echo "No GPU support will be enabled for TensorFlow"; TF_NEED_CUDA=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
if [ "$TF_NEED_CUDA" == "0" ]; then
echo "Configuration finished"
exit
fi
# Set up which gcc nvcc should use as the host compiler
while true; do
fromuser=""
if [ -z "$GCC_HOST_COMPILER_PATH" ]; then
default_gcc_host_compiler_path=$(which gcc)
read -p "Please specify which gcc nvcc should use as the host compiler. [Default is $default_gcc_host_compiler_path]: " GCC_HOST_COMPILER_PATH
fromuser="1"
if [ -z "$GCC_HOST_COMPILER_PATH" ]; then
GCC_HOST_COMPILER_PATH=$default_gcc_host_compiler_path
fi
fi
if [ -e "$GCC_HOST_COMPILER_PATH" ]; then
break
fi
echo "Invalid gcc path. ${GCC_HOST_COMPILER_PATH} cannot be found" 1>&2
if [ -z "$fromuser" ]; then
exit 1
fi
GCC_HOST_COMPILER_PATH=""
# Retry
done
# Find out where the CUDA toolkit is installed
OSNAME=`uname -s`
while true; do
# Configure the Cuda SDK version to use.
if [ -z "$TF_CUDA_VERSION" ]; then
read -p "Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: " TF_CUDA_VERSION
fi
fromuser=""
if [ -z "$CUDA_TOOLKIT_PATH" ]; then
default_cuda_path=/usr/local/cuda
read -p "Please specify the location where CUDA $TF_CUDA_VERSION toolkit is installed. Refer to README.md for more details. [Default is $default_cuda_path]: " CUDA_TOOLKIT_PATH
fromuser="1"
if [ -z "$CUDA_TOOLKIT_PATH" ]; then
CUDA_TOOLKIT_PATH=$default_cuda_path
fi
fi
if [[ -z "$TF_CUDA_VERSION" ]]; then
TF_CUDA_EXT=""
else
TF_CUDA_EXT=".$TF_CUDA_VERSION"
fi
if [ "$OSNAME" == "Linux" ]; then
CUDA_RT_LIB_PATH="lib64/libcudart.so${TF_CUDA_EXT}"
elif [ "$OSNAME" == "Darwin" ]; then
CUDA_RT_LIB_PATH="lib/libcudart${TF_CUDA_EXT}.dylib"
fi
if [ -e "${CUDA_TOOLKIT_PATH}/${CUDA_RT_LIB_PATH}" ]; then
break
fi
echo "Invalid path to CUDA $TF_CUDA_VERSION toolkit. ${CUDA_TOOLKIT_PATH}/${CUDA_RT_LIB_PATH} cannot be found"
if [ -z "$fromuser" ]; then
exit 1
fi
# Retry
TF_CUDA_VERSION=""
CUDA_TOOLKIT_PATH=""
done
# Find out where the cuDNN library is installed
while true; do
# Configure the Cudnn version to use.
if [ -z "$TF_CUDNN_VERSION" ]; then
read -p "Please specify the Cudnn version you want to use. [Leave empty to use system default]: " TF_CUDNN_VERSION
fi
fromuser=""
if [ -z "$CUDNN_INSTALL_PATH" ]; then
default_cudnn_path=${CUDA_TOOLKIT_PATH}
read -p "Please specify the location where cuDNN $TF_CUDNN_VERSION library is installed. Refer to README.md for more details. [Default is $default_cudnn_path]: " CUDNN_INSTALL_PATH
fromuser="1"
if [ -z "$CUDNN_INSTALL_PATH" ]; then
CUDNN_INSTALL_PATH=$default_cudnn_path
fi
# Result returned from "read" will be used unexpanded. That make "~" unuseable.
# Going through one more level of expansion to handle that.
CUDNN_INSTALL_PATH=`${PYTHON_BIN_PATH} -c "import os; print(os.path.realpath(os.path.expanduser('${CUDNN_INSTALL_PATH}')))"`
fi
if [[ -z "$TF_CUDNN_VERSION" ]]; then
TF_CUDNN_EXT=""
else
TF_CUDNN_EXT=".$TF_CUDNN_VERSION"
fi
if [ "$OSNAME" == "Linux" ]; then
CUDA_DNN_LIB_PATH="lib64/libcudnn.so${TF_CUDNN_EXT}"
CUDA_DNN_LIB_ALT_PATH="libcudnn.so${TF_CUDNN_EXT}"
elif [ "$OSNAME" == "Darwin" ]; then
CUDA_DNN_LIB_PATH="lib/libcudnn${TF_CUDNN_EXT}.dylib"
CUDA_DNN_LIB_ALT_PATH="libcudnn${TF_CUDNN_EXT}.dylib"
fi
if [ -e "$CUDNN_INSTALL_PATH/${CUDA_DNN_LIB_ALT_PATH}" -o -e "$CUDNN_INSTALL_PATH/${CUDA_DNN_LIB_PATH}" ]; then
break
fi
if [ "$OSNAME" == "Linux" ]; then
CUDNN_PATH_FROM_LDCONFIG="$(ldconfig -p | sed -n 's/.*libcudnn.so .* => \(.*\)/\1/p')"
if [ -e "${CUDNN_PATH_FROM_LDCONFIG}${TF_CUDNN_EXT}" ]; then
CUDNN_INSTALL_PATH="$(dirname ${CUDNN_PATH_FROM_LDCONFIG})"
break
fi
fi
echo "Invalid path to cuDNN ${CUDNN_VERSION} toolkit. Neither of the following two files can be found:"
echo "${CUDNN_INSTALL_PATH}/${CUDA_DNN_LIB_PATH}"
echo "${CUDNN_INSTALL_PATH}/${CUDA_DNN_LIB_ALT_PATH}"
if [ "$OSNAME" == "Linux" ]; then
echo "${CUDNN_PATH_FROM_LDCONFIG}${TF_CUDNN_EXT}"
fi
if [ -z "$fromuser" ]; then
exit 1
fi
# Retry
TF_CUDNN_VERSION=""
CUDNN_INSTALL_PATH=""
done
cat > third_party/gpus/cuda/cuda.config <<EOF
# CUDA_TOOLKIT_PATH refers to the CUDA toolkit.
CUDA_TOOLKIT_PATH="$CUDA_TOOLKIT_PATH"
# CUDNN_INSTALL_PATH refers to the cuDNN toolkit. The cuDNN header and library
# files can be either in this directory, or under include/ and lib64/
# directories separately.
CUDNN_INSTALL_PATH="$CUDNN_INSTALL_PATH"
# The Cuda SDK version that should be used in this build (empty to use libcudart.so symlink)
TF_CUDA_VERSION=$TF_CUDA_VERSION
# The Cudnn version that should be used in this build
TF_CUDNN_VERSION=$TF_CUDNN_VERSION
EOF
# Configure the gcc host compiler to use
export WARNING=$DO_NOT_SUBMIT_WARNING
perl -pi -e "s,CPU_COMPILER = \('.*'\),# \$ENV{WARNING}\nCPU_COMPILER = ('$GCC_HOST_COMPILER_PATH'),s" third_party/gpus/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc
perl -pi -e "s,GCC_HOST_COMPILER_PATH = \('.*'\),# \$ENV{WARNING}\nGCC_HOST_COMPILER_PATH = ('$GCC_HOST_COMPILER_PATH'),s" third_party/gpus/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc
# Configure the platform name.
perl -pi -e "s,PLATFORM = \".*\",PLATFORM = \"$OSNAME\",s" third_party/gpus/cuda/platform.bzl
# Configure the Cuda toolkit version to work with.
perl -pi -e "s,(GetCudaVersion.*return )\"[0-9\.]*\",\1\"$TF_CUDA_VERSION\",s" tensorflow/stream_executor/dso_loader.cc
perl -pi -e "s,CUDA_VERSION = \"[0-9\.]*\",CUDA_VERSION = \"$TF_CUDA_VERSION\",s" third_party/gpus/cuda/platform.bzl
# Configure the Cudnn version to work with.
perl -pi -e "s,(GetCudnnVersion.*return )\"[0-9\.]*\",\1\"$TF_CUDNN_VERSION\",s" tensorflow/stream_executor/dso_loader.cc
perl -pi -e "s,CUDNN_VERSION = \"[0-9\.]*\",CUDNN_VERSION = \"$TF_CUDNN_VERSION\",s" third_party/gpus/cuda/platform.bzl
# Configure the compute capabilities that TensorFlow builds for.
# Since Cuda toolkit is not backward-compatible, this is not guaranteed to work.
while true; do
fromuser=""
if [ -z "$TF_CUDA_COMPUTE_CAPABILITIES" ]; then
cat << EOF
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
EOF
read -p "[Default is: \"3.5,5.2\"]: " TF_CUDA_COMPUTE_CAPABILITIES
fromuser=1
fi
# Check whether all capabilities from the input is valid
COMPUTE_CAPABILITIES=${TF_CUDA_COMPUTE_CAPABILITIES//,/ }
ALL_VALID=1
for CAPABILITY in $COMPUTE_CAPABILITIES; do
if [[ ! "$CAPABILITY" =~ [0-9]+.[0-9]+ ]]; then
echo "Invalid compute capability: " $CAPABILITY
ALL_VALID=0
break
fi
done
if [ "$ALL_VALID" == "0" ]; then
if [ -z "$fromuser" ]; then
exit 1
fi
else
break
fi
TF_CUDA_COMPUTE_CAPABILITIES=""
done
if [ ! -z "$TF_CUDA_COMPUTE_CAPABILITIES" ]; then
export WARNING=$DO_NOT_SUBMIT_WARNING
function CudaGenCodeOpts() {
OUTPUT=""
for CAPABILITY in $@; do
OUTPUT=${OUTPUT}" \"${CAPABILITY}\", "
done
echo $OUTPUT
}
export CUDA_GEN_CODES_OPTS=$(CudaGenCodeOpts ${TF_CUDA_COMPUTE_CAPABILITIES//,/ })
perl -pi -0 -e 's,\n( *)([^\n]*supported_cuda_compute_capabilities\s*=\s*\[).*?(\]),\n\1# $ENV{WARNING}\n\1\2$ENV{CUDA_GEN_CODES_OPTS}\3,s' third_party/gpus/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc
function CudaVersionOpts() {
OUTPUT=""
for CAPABILITY in $@; do
OUTPUT=$OUTPUT"CudaVersion(\"${CAPABILITY}\"), "
done
echo $OUTPUT
}
export CUDA_VERSION_OPTS=$(CudaVersionOpts ${TF_CUDA_COMPUTE_CAPABILITIES//,/ })
perl -pi -0 -e 's,\n( *)([^\n]*supported_cuda_compute_capabilities\s*=\s*\{).*?(\}),\n\1// $ENV{WARNING}\n\1\2$ENV{CUDA_VERSION_OPTS}\3,s' tensorflow/core/common_runtime/gpu/gpu_device.cc
fi
# Invoke the cuda_config.sh and set up the TensorFlow's canonical view of the Cuda libraries
(cd third_party/gpus/cuda; ./cuda_config.sh;) || exit -1
echo "Configuration finished"