If you would like to use the image augmentations, please install AugLy using the following command:
pip install augly[image]
Try running some AugLy image augmentations! For a full list of available augmentations, see here.
Our image augmentations use PIL
as their backend. All functions accept a path to the image or a PIL Image object to be augmented as input and return the augmented PIL Image object. If an output path is specified, the image will also be saved to a file.
You can call the functional augmentations like so:
import augly.image as imaugs
image_path = "your_img_path.png"
output_path = "your_output_path.png"
# Augmentation functions can accept image paths as input and
# always return the resulting augmented PIL Image
aug_image = imaugs.overlay_emoji(image_path, opacity=1.0, emoji_size=0.15)
# Augmentation functions can also accept PIL Images as input
aug_image = imaugs.pad_square(aug_image)
# If an output path is specified, the image will also be saved to a file
aug_image = imaugs.overlay_onto_screenshot(aug_image, output_path=output_path)
You can also call any augmentation as a Transform class, including composing them together and applying them with a given probability. This also means that you can easily integrate with PyTorch transformations if needed:
import torchvision.transforms as transforms
import augly.image as imaugs
COLOR_JITTER_PARAMS = {
"brightness_factor": 1.2,
"contrast_factor": 1.2,
"saturation_factor": 1.4,
}
AUGMENTATIONS = [
imaugs.Blur(),
imaugs.ColorJitter(**COLOR_JITTER_PARAMS),
imaugs.OneOf(
[imaugs.OverlayOntoScreenshot(), imaugs.OverlayEmoji(), imaugs.OverlayText()]
),
]
TRANSFORMS = imaugs.Compose(AUGMENTATIONS)
TENSOR_TRANSFORMS = transforms.Compose(AUGMENTATIONS + [transforms.ToTensor()])
# aug_image is a PIL image with your augs applied!
# aug_tensor_image is a Tensor with your augs applied!
image = Image.open("your_img_path.png")
aug_image = TRANSFORMS(image)
aug_tensor_image = TENSOR_TRANSFORMS(image)
If your image is currently in the form of a NumPy array and you don't want to save the image as a file before using the augmentation functions, you can use our NumPy wrapper:
from augly.image import aug_np_wrapper, overlay_emoji
np_image = np.zeros((300, 300))
# pass in function arguments as kwargs
np_aug_img = aug_np_wrapper(np_image, overlay_emoji, **{'opacity': 0.5, 'y_pos': 0.45})
If the images you're augmenting have associated bounding boxes which you want to preserve after augmentation, you can pass in the bounding boxes to each augmentation you apply. You must also pass in the metadata
arg, which will then contain metadata about the augmentations applied including the src & dst coordinates of the bounding boxes you passed in, in the specified format.
import augly.image as imaugs
meta = []
aug_image = imaugs.crop(
image_path,
bboxes=[(0.25, 0.5, 0.75, 0.8)],
bbox_format="pascal_voc_norm",
metadata=meta,
)
The supported bounding box formats are:
pascal_voc
: (left
,upper
,right
,lower
) - all coordinates in pixelspascal_voc_norm
: (left
,upper
,right
,lower
) - all coordinates normalized by the width/height of the image respectivelycoco
: (left
,upper
,width
,height
) - all coordinates in pixelsyolo
: (x_center
,y_center
,width
,height
) - all coordinates normalized by the width/height of the image respectively
See here to read more about some of these common bounding box formats and about structured data in general.
You can run our normal image unit tests if you have cloned augly
(see here) by running the following:
python -m unittest discover -s augly/tests/image_tests/ -p "*_test.py"
Note: If you want to additionally run the pytorch unit test (you must have torchvision installed), you can run:
python -m unittest discover -s augly/tests/image_tests/ -p "*"