This repository has been archived by the owner on Jan 13, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathtrain.lua
247 lines (222 loc) · 8.58 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
--
-- Copyright (c) 2015, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Author: Sumit Chopra <[email protected]>
-- Michael Mathieu <[email protected]>
-- Marc'Aurelio Ranzato <[email protected]>
-- Tomas Mikolov <[email protected]>
-- Armand Joulin <[email protected]>
-- This file contains training routines when *not* using hogwild.
require 'math'
require 'sys'
require 'os'
require 'torch'
require 'xlua'
local RNNTrainer = torch.class('RNNTrainer')
-- config:
-- initial_learning_rate
-- learning_rate_shrink : divides the learning rate when the
-- validation error increases
-- gradient_clip
-- gradInput_clip
-- momentum
-- use_valid
-- use_test
-- progress_bar
-- unk_index
-- save_dir
function RNNTrainer:__init(config, model, dataset)
self.training_params = {learning_rate = config.initial_learning_rate,
gradient_clip = config.gradient_clip,
gradInput_clip = config.gradInput_clip,
momentum = config.momentum}
self.learning_rate_shrink = config.learning_rate_shrink
self.shrink_multiplier = config.shrink_factor
self.trbatches = config.trbatches
self.unk_index = config.unk_index
self.progress_bar = not config.no_progress
self.model = model
self.dataset = dataset
self.save_dir = config.save_dir
self.use_valid = config.use_valid_set
self.use_test = config.use_test_set
self.type = torch.Tensor():type()
self.anneal_type = config.shrink_type
self.annealed = false
end
function RNNTrainer:cuda()
self.type = 'torch.CudaTensor'
end
-- main train function
function RNNTrainer:run_epoch_train()
local total_err = 0
local n_total = 0
local n_words = 0
self.model:reset()
local shard = self.dataset:get_shard('train')
if self.type == 'torch.CudaTensor' then
shard = shard:type(self.type)
end
local inputs = shard[{{1, shard:size(1)-1}}]
local labels = shard[{{2, shard:size(1)}}]
local batch_size = shard:size(2)
n_words = n_words + inputs:size(1)*inputs:size(2)
local size = self.trbatches == -1 and inputs:size(1) or self.trbatches
for i = 1, size do
if i % 1000 == 0 then
if self.progress_bar then
xlua.progress(i, size)
end
if sys.isNaN(self.model.w:sum()) then
print('Not a Number detected')
os.exit(0)
end
end
local err, n = self.model:newInputTrain(inputs[i], labels[i],
self.training_params)
if type(err) ~= 'number' then
err = err[1]
end
total_err = total_err + err
n_total = n_total + n
end
collectgarbage()
return total_err/n_total / math.log(2), n_words
end
-- validation function : runs the model on the validation set (or any set)
-- and returns the average entropy (base 2)
function RNNTrainer:run_epoch_val(set_name)
set_name = set_name or 'valid'
-- local n_shards = self.dataset:get_n_shards(set_name)
local total_err, total_n = 0, 0
self.model:reset()
local shard = self.dataset:get_shard(set_name)
if self.type == 'torch.CudaTensor' then
shard = shard:type(self.type)
end
local inputs = shard[{{1, shard:size(1)-1}}]
local labels = shard[{{2, shard:size(1)}}]
local err, n = self.model:test(inputs, labels)
total_err = total_err + err
total_n = total_n + n
collectgarbage()
return total_err / total_n / math.log(2)
end
-- see run_epoch_val (same on test set)
function RNNTrainer:run_epoch_test()
return self:run_epoch_val('test')
end
-- runs train, validation and test on n_epoches epoches
function RNNTrainer:run(n_epoches)
local last_val_err = 1e30
local last_model = nil
local unk_index = self.unk_index
local train_err = torch.zeros(n_epoches)
local val_err = torch.zeros(n_epoches)
local test_err = torch.zeros(n_epoches)
local time = torch.zeros(n_epoches)
-- save the untrained model
if self.save_dir ~= nil then
if paths.dirp(self.save_dir) == false then
os.execute('mkdir -p ' .. self.save_dir)
end
print('*** saving the model ***')
torch.save(paths.concat(self.save_dir, 'model_0'), self.model)
end
for i = 1, n_epoches do
local timer = torch.tic()
local n_words
if (self.unk_index ~= nil) and
(self.model.nets.decode_with_loss ~= nil) then
-- UNK with HSM
-- disable unk_index for training
self.model.nets.decode_with_loss.unk_index = 0
train_err[i], n_words = self:run_epoch_train()
-- enable unk_index for testing
self.model.nets.decode_with_loss.unk_index = unk_index
else
train_err[i], n_words = self:run_epoch_train()
end
time[i] = torch.toc(timer)
io.write(string.format('\n\nEpoch: %d. Training time: %.2fs. ' ..
'Words/s: %.2f',
i, time[i], n_words/time[i]))
io.write(string.format('\nTraining: Entropy (base 2) : %.5f || ' ..
'Perplexity : %0.5f',
train_err[i], math.pow(2, train_err[i])))
io.flush()
-- save the trained model
if self.save_dir ~= nil then
if paths.dirp(self.save_dir) == false then
os.execute('mkdir -p ' .. self.save_dir)
end
torch.save(paths.concat(self.save_dir, 'model_' .. i), self.model)
end
-- evaluate model on the validation set
if (self.use_valid == 1) or (self.use_valid == true) then
val_err[i] = self:run_epoch_val('valid')
-- io.write(string.format('Total time : %.2fs',torch.toc(timer)))
io.write(string.format('\nValidation: Entropy (base 2) : %.5f || ' ..
'Perplexity : %0.5f',
val_err[i], math.pow(2, val_err[i])))
io.flush()
end
-- evaluate model on the test set
if (self.use_test == 1) or (self.use_test == true) then
test_err [i]= self:run_epoch_test('test')
io.write(string.format('\nTesting: Entropy (base 2) : %.5f || '..
'Perplexity : %0.5f',
test_err[i], math.pow(2, test_err[i])))
io.flush()
end
-- decrease learning rate if needed
if self.annealed == false then
if (self.use_valid == 1) and (self.learning_rate_shrink ~= nil) and
(val_err[i] > last_val_err * self.shrink_multiplier) then
self.training_params.learning_rate =
self.training_params.learning_rate / self.learning_rate_shrink
self.model = last_model or self.model
io.write('\nDecreasing the learning rate to '
.. self.training_params.learning_rate)
if self.anneal_type == 'fast' then
self.annealed = true
end
else
last_val_err = val_err[i]
last_model = self.model:clone()
end
else -- anneal the learning rate after every subsequent epoch
self.training_params.learning_rate =
self.training_params.learning_rate / self.learning_rate_shrink
io.write('\nDecreasing the learning rate to '
.. self.training_params.learning_rate)
end
print('')
-- save the logs of accuracy and time
if self.save_dir ~= nil then
torch.save(paths.concat(self.save_dir, 'model.log'),
{train_err=train_err, test_err=test_err,
valid_err=val_err, time=time, epoch=i})
end
end
end
function RNNTrainer:evaluate()
-- evaluate model on the validation set
local val_err = self:run_epoch_val('valid')
-- io.write(string.format('Total time : %.2fs',torch.toc(timer)))
io.write(string.format('\nValidation: Entropy (base 2) : %.5f || ' ..
'Perplexity : %0.5f',
val_err, math.pow(2, val_err)))
io.flush()
-- evaluate model on the test set
local test_err = self:run_epoch_test('test')
io.write(string.format('\nTesting: Entropy (base 2) : %.5f || '..
'Perplexity : %0.5f',
test_err, math.pow(2, test_err)))
io.flush()
end