diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 7bb07754a1..3da2b63d8f 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -58,7 +58,7 @@ jobs: fail-fast: true matrix: os: [ubuntu-latest, windows-latest, macos-latest] - python_version: ["3.9", "3.11", "3.12"] + python_version: ["3.9", "3.12"] runs-on: ${{ matrix.os }} diff --git a/setup.cfg b/setup.cfg index 5030729b77..dc2493ed76 100644 --- a/setup.cfg +++ b/setup.cfg @@ -21,6 +21,7 @@ classifiers = Programming Language :: Python :: 3.10 Programming Language :: Python :: 3.11 Programming Language :: Python :: 3.12 + Programming Language :: Python :: 3.13 Topic :: Scientific/Engineering project_urls = Release notes = https://github.com/explosion/spaCy/releases @@ -29,13 +30,13 @@ project_urls = [options] zip_safe = false include_package_data = true -python_requires = >=3.9 +python_requires = >=3.9,<3.13 # NOTE: This section is superseded by pyproject.toml and will be removed in # spaCy v4 setup_requires = cython>=0.25,<3.0 - numpy>=2.0.0,<2.1.0; python_version < "3.9" - numpy>=2.0.0,<2.1.0; python_version >= "3.9" + numpy>=2.0.0,<3.0.0; python_version < "3.9" + numpy>=2.0.0,<3.0.0; python_version >= "3.9" # We also need our Cython packages here to compile against cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 diff --git a/spacy/about.py b/spacy/about.py index 9aabb20ebc..a42f63a5d6 100644 --- a/spacy/about.py +++ b/spacy/about.py @@ -1,5 +1,5 @@ # fmt: off __title__ = "spacy" -__version__ = "3.8.2" +__version__ = "3.8.3" __download_url__ = "https://github.com/explosion/spacy-models/releases/download" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" diff --git a/spacy/morphology.pyx b/spacy/morphology.pyx index cef45b04d1..6f0cb03f06 100644 --- a/spacy/morphology.pyx +++ b/spacy/morphology.pyx @@ -57,16 +57,20 @@ cdef class Morphology: field_feature_pairs = [] for field in sorted(string_features): values = string_features[field] + self.strings.add(field, allow_transient=False), + field_id = self.strings[field] for value in values.split(self.VALUE_SEP): + field_sep_value = field + self.FIELD_SEP + value + self.strings.add(field_sep_value, allow_transient=False), field_feature_pairs.append(( - self.strings.add(field), - self.strings.add(field + self.FIELD_SEP + value), + field_id, + self.strings[field_sep_value] )) cdef MorphAnalysisC tag = self.create_morph_tag(field_feature_pairs) # the hash key for the tag is either the hash of the normalized UFEATS # string or the hash of an empty placeholder norm_feats_string = self.normalize_features(features) - tag.key = self.strings.add(norm_feats_string) + tag.key = self.strings.add(norm_feats_string, allow_transient=False) self.insert(tag) return tag.key diff --git a/spacy/strings.pyx b/spacy/strings.pyx index defb6d6f41..65e851cae4 100644 --- a/spacy/strings.pyx +++ b/spacy/strings.pyx @@ -222,6 +222,8 @@ cdef class StringStore: internally should not. RETURNS (uint64): The string's hash value. """ + if not string: + return 0 if allow_transient is None: allow_transient = self.mem is not self._non_temp_mem cdef hash_t str_hash @@ -383,7 +385,10 @@ cdef class StringStore: cdef Utf8Str* value = self._map.get(key) if value is not NULL: return value - value = _allocate(self.mem, utf8_string, length) + if allow_transient: + value = _allocate(self.mem, utf8_string, length) + else: + value = _allocate(self._non_temp_mem, utf8_string, length) self._map.set(key, value) if allow_transient and self.mem is not self._non_temp_mem: self._transient_keys.push_back(key) diff --git a/spacy/tests/training/test_pretraining.py.disabled b/spacy/tests/training/test_pretraining.py.disabled index 5e5f946227..22364bb78d 100644 --- a/spacy/tests/training/test_pretraining.py.disabled +++ b/spacy/tests/training/test_pretraining.py.disabled @@ -264,50 +264,51 @@ def test_pretraining_tagger(): pretrain(filled, tmp_dir) -def test_pretraining_training(): - """Test that training can use a pretrained Tok2Vec model""" - config = Config().from_str(pretrain_string_internal) - nlp = util.load_model_from_config(config, auto_fill=True, validate=False) - filled = nlp.config - pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH) - filled = pretrain_config.merge(filled) - train_config = util.load_config(DEFAULT_CONFIG_PATH) - filled = train_config.merge(filled) - with make_tempdir() as tmp_dir: - pretrain_dir = tmp_dir / "pretrain" - pretrain_dir.mkdir() - file_path = write_sample_jsonl(pretrain_dir) - filled["paths"]["raw_text"] = file_path - filled["pretraining"]["component"] = "tagger" - filled["pretraining"]["layer"] = "tok2vec" - train_dir = tmp_dir / "train" - train_dir.mkdir() - train_path, dev_path = write_sample_training(train_dir) - filled["paths"]["train"] = train_path - filled["paths"]["dev"] = dev_path - filled = filled.interpolate() - P = filled["pretraining"] - nlp_base = init_nlp(filled) - model_base = ( - nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed") - ) - embed_base = None - for node in model_base.walk(): - if node.name == "hashembed": - embed_base = node - pretrain(filled, pretrain_dir) - pretrained_model = Path(pretrain_dir / "model3.bin") - assert pretrained_model.exists() - filled["initialize"]["init_tok2vec"] = str(pretrained_model) - nlp = init_nlp(filled) - model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed") - embed = None - for node in model.walk(): - if node.name == "hashembed": - embed = node - # ensure that the tok2vec weights are actually changed by the pretraining - assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E"))) - train(nlp, train_dir) +# Try to debug segfault on windows +#def test_pretraining_training(): +# """Test that training can use a pretrained Tok2Vec model""" +# config = Config().from_str(pretrain_string_internal) +# nlp = util.load_model_from_config(config, auto_fill=True, validate=False) +# filled = nlp.config +# pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH) +# filled = pretrain_config.merge(filled) +# train_config = util.load_config(DEFAULT_CONFIG_PATH) +# filled = train_config.merge(filled) +# with make_tempdir() as tmp_dir: +# pretrain_dir = tmp_dir / "pretrain" +# pretrain_dir.mkdir() +# file_path = write_sample_jsonl(pretrain_dir) +# filled["paths"]["raw_text"] = file_path +# filled["pretraining"]["component"] = "tagger" +# filled["pretraining"]["layer"] = "tok2vec" +# train_dir = tmp_dir / "train" +# train_dir.mkdir() +# train_path, dev_path = write_sample_training(train_dir) +# filled["paths"]["train"] = train_path +# filled["paths"]["dev"] = dev_path +# filled = filled.interpolate() +# P = filled["pretraining"] +# nlp_base = init_nlp(filled) +# model_base = ( +# nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed") +# ) +# embed_base = None +# for node in model_base.walk(): +# if node.name == "hashembed": +# embed_base = node +# pretrain(filled, pretrain_dir) +# pretrained_model = Path(pretrain_dir / "model3.bin") +# assert pretrained_model.exists() +# filled["initialize"]["init_tok2vec"] = str(pretrained_model) +# nlp = init_nlp(filled) +# model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed") +# embed = None +# for node in model.walk(): +# if node.name == "hashembed": +# embed = node +# # ensure that the tok2vec weights are actually changed by the pretraining +# assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E"))) +# train(nlp, train_dir) def write_sample_jsonl(tmp_dir):