From 7c1dea1cd4f2c580c488ec632434d3e919a6c5ba Mon Sep 17 00:00:00 2001 From: Andrei Cramariuc Date: Thu, 30 Mar 2023 09:50:40 +0200 Subject: [PATCH 1/2] Removed unused localization filter from node --- algorithms/localization-fusion/CMakeLists.txt | 30 -- .../include/localization-fusion/filter-base.h | 261 ----------- .../localization-fusion/filter-common.h | 73 --- .../localization-fusion/filter-utilities.h | 35 -- .../localization-fusion/localization-filter.h | 138 ------ .../include/localization-fusion/ukf.h | 123 ----- algorithms/localization-fusion/package.xml | 20 - .../localization-fusion/src/filter-base.cc | 199 -------- .../src/filter-utilities.cc | 65 --- .../src/localization-filter.cc | 229 ---------- algorithms/localization-fusion/src/ukf.cc | 282 ------------ .../test/test-ukf-2d-performance.cc | 172 ------- .../test/test-ukf-filter.cc | 224 --------- applications/maplab-node/CMakeLists.txt | 9 +- .../include/maplab-node/data-publisher-flow.h | 29 +- .../include/maplab-node/flow-topics.h | 11 +- .../maplab-node/localization-handler-flow.h | 33 -- .../maplab-node/localization-handler.h | 86 ---- .../include/maplab-node/map-update-builder.h | 1 - .../include/maplab-node/maplab-node.h | 21 - .../include/maplab-node/synchronizer-flow.h | 4 - .../include/maplab-node/synchronizer.h | 8 - .../maplab-node/visual-localizer-flow.h | 43 -- .../maplab-node/visual-localizer-helpers.h | 27 -- .../include/maplab-node/visual-localizer.h | 62 --- applications/maplab-node/package.xml | 1 - .../maplab-node/share/maplab_rosparams.yaml | 68 --- .../maplab-node/src/data-publisher-flow.cc | 182 +------- .../src/localization-handler-flow.cc | 52 --- .../maplab-node/src/localization-handler.cc | 424 ------------------ applications/maplab-node/src/maplab-node.cc | 98 +--- .../maplab-node/src/maplab-ros-node.cc | 55 --- applications/maplab-node/src/synchronizer.cc | 66 +-- .../maplab-node/src/visual-localizer-flow.cc | 82 ---- .../src/visual-localizer-helpers.cc | 146 ------ .../maplab-node/src/visual-localizer.cc | 148 ------ .../vio-common/include/vio-common/vio-types.h | 51 --- 37 files changed, 38 insertions(+), 3520 deletions(-) delete mode 100644 algorithms/localization-fusion/CMakeLists.txt delete mode 100644 algorithms/localization-fusion/include/localization-fusion/filter-base.h delete mode 100644 algorithms/localization-fusion/include/localization-fusion/filter-common.h delete mode 100644 algorithms/localization-fusion/include/localization-fusion/filter-utilities.h delete mode 100644 algorithms/localization-fusion/include/localization-fusion/localization-filter.h delete mode 100644 algorithms/localization-fusion/include/localization-fusion/ukf.h delete mode 100644 algorithms/localization-fusion/package.xml delete mode 100644 algorithms/localization-fusion/src/filter-base.cc delete mode 100644 algorithms/localization-fusion/src/filter-utilities.cc delete mode 100644 algorithms/localization-fusion/src/localization-filter.cc delete mode 100644 algorithms/localization-fusion/src/ukf.cc delete mode 100644 algorithms/localization-fusion/test/test-ukf-2d-performance.cc delete mode 100644 algorithms/localization-fusion/test/test-ukf-filter.cc delete mode 100644 applications/maplab-node/include/maplab-node/localization-handler-flow.h delete mode 100644 applications/maplab-node/include/maplab-node/localization-handler.h delete mode 100644 applications/maplab-node/include/maplab-node/visual-localizer-flow.h delete mode 100644 applications/maplab-node/include/maplab-node/visual-localizer-helpers.h delete mode 100644 applications/maplab-node/include/maplab-node/visual-localizer.h delete mode 100644 applications/maplab-node/share/maplab_rosparams.yaml delete mode 100644 applications/maplab-node/src/localization-handler-flow.cc delete mode 100644 applications/maplab-node/src/localization-handler.cc delete mode 100644 applications/maplab-node/src/visual-localizer-flow.cc delete mode 100644 applications/maplab-node/src/visual-localizer-helpers.cc delete mode 100644 applications/maplab-node/src/visual-localizer.cc diff --git a/algorithms/localization-fusion/CMakeLists.txt b/algorithms/localization-fusion/CMakeLists.txt deleted file mode 100644 index 2af6577865..0000000000 --- a/algorithms/localization-fusion/CMakeLists.txt +++ /dev/null @@ -1,30 +0,0 @@ -cmake_minimum_required(VERSION 2.8.3) -project(localization_fusion) - -find_package(catkin_simple REQUIRED) -catkin_simple(ALL_DEPS_REQUIRED) - -cs_add_library(${PROJECT_NAME} - src/filter-base.cc - src/filter-utilities.cc - src/localization-filter.cc - src/ukf.cc) - -########## -# GTESTS # -########## -catkin_add_gtest(test_ukf_localizer test/test-ukf-filter.cc) -target_link_libraries(test_ukf_localizer ${PROJECT_NAME}) - -## to add the data for localization fusion testing -SET(PROJECT_TEST_DATA "localization_fusion_test_data") -add_custom_target(${PROJECT_TEST_DATA}) -add_custom_command(TARGET ${PROJECT_TEST_DATA} -COMMAND rm -rf "./${PROJECT_TEST_DATA}/*" && tar -xvzf ${MAPLAB_TEST_DATA_DIR}/${PROJECT_TEST_DATA}/${PROJECT_TEST_DATA}.tar.gz) - -catkin_add_gtest(test_ukf_localizer_2d test/test-ukf-2d-performance.cc) -target_link_libraries(test_ukf_localizer_2d ${PROJECT_NAME}) -add_dependencies(test_ukf_localizer_2d ${PROJECT_TEST_DATA}) - -cs_install() -cs_export() diff --git a/algorithms/localization-fusion/include/localization-fusion/filter-base.h b/algorithms/localization-fusion/include/localization-fusion/filter-base.h deleted file mode 100644 index 736926e8a9..0000000000 --- a/algorithms/localization-fusion/include/localization-fusion/filter-base.h +++ /dev/null @@ -1,261 +0,0 @@ -/* - * Based on: - * - * Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution. - * 3. Neither the name of the copyright holder nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE - * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN - * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef LOCALIZATION_FUSION_FILTER_BASE_H_ -#define LOCALIZATION_FUSION_FILTER_BASE_H_ - -#include "localization-fusion/filter-common.h" -#include "localization-fusion/filter-utilities.h" - -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -namespace maplab { - -//! @brief Structure used for storing measurements -//! -//! Measurement units are assumed to be in meters and radians. -//! Times are real-valued and measured in nanoseconds. -//! -struct LocalizationFilterMeasurement { - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - - // The real-valued time, in nanoseconds, since some epoch - // (presumably the start of execution, but any will do) - int64_t time_; - - // The measurement and its associated covariance - Eigen::VectorXd measurement_; - Eigen::MatrixXd covariance_; - - LocalizationFilterMeasurement() : time_(aslam::time::getInvalidTime()) {} -}; - -//! @brief Structure used for storing predicted states -//! -//! Measurement units are assumed to be in meters and radians. -//! Times are real-valued and measured in nanoseconds. -//! -struct LocalizationFilterPrediction { - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - - // The real-valued time, in nanoseconds, since some epoch - // (presumably the start of execution, but any will do) - int64_t time_; - - // The prediction and its associated covariance - Eigen::VectorXd predicted_state_; - Eigen::MatrixXd covariance_; - - LocalizationFilterPrediction() : time_(aslam::time::getInvalidTime()) {} -}; - -//! @brief Structure used for storing and comparing filter states -//! -//! This structure is useful when higher-level classes need to remember filter -//! history. -//! Measurement units are assumed to be in meters and radians. -//! Times are real-valued and measured in seconds. -//! -struct FilterState { - // The time stamp of the most recent measurement for the filter - int64_t lastMeasurementTime_; - - // The filter state vector - Eigen::VectorXd state_; - - // The filter error covariance matrix - Eigen::MatrixXd estimateErrorCovariance_; - - FilterState() : lastMeasurementTime_(aslam::time::getInvalidTime()) {} -}; - -class FilterBase { - public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - //! @brief Constructor for the FilterBase class - //! - FilterBase(); - - //! @brief Destructor for the FilterBase class - //! - virtual ~FilterBase(); - - //! @brief Resets filter to its unintialized state - //! - void reset(); - - //! @brief Carries out the correct step in the predict/update cycle. This - //! method - //! must be implemented by subclasses. - //! - //! @param[in] measurement - The measurement to fuse with the state estimate - //! - virtual bool correct( - const LocalizationFilterMeasurement& measurement, - const std::vector& updateVector) = 0; - - //! @brief Gets the estimate error covariance - //! - //! @return A copy of the estimate error covariance matrix - //! - const Eigen::MatrixXd& getEstimateErrorCovariance() const; - - //! @brief Gets the filter's initialized status - //! - //! @return True if we've received our first measurement, false otherwise - //! - bool getInitializedStatus() const; - - //! @brief Gets the most recent measurement time - //! - //! @return The time at which we last received a measurement - //! - int64_t getLastMeasurementTime() const; - - //! @brief Gets the filter state - //! - //! @return A constant reference to the current state - //! - const Eigen::VectorXd& getState() const; - - //! @brief Carries out the predict step in the predict/update cycle. - //! Projects the state and error matrices forward using a model of - //! the vehicle's motion. This method must be implemented by subclasses. - //! - //! @param[in] delta_time_s - The time step [in seconds] over which to - //! @param[in] odom_prediction - The predicted state from the odometry - //! - virtual void predict( - const LocalizationFilterPrediction& odom_prediction = - LocalizationFilterPrediction()) = 0; - - //! @brief Does some final preprocessing, carries out the predict/update cycle - //! - //! @param[in] measurement - The measurement object to fuse into the filter - //! - virtual bool processMeasurement( - const LocalizationFilterMeasurement& measurement, - const LocalizationFilterPrediction& odom_prediction, - const std::vector& updateVector); - - //! @brief Manually sets the filter's estimate error covariance - //! - //! @param[in] estimate_error_covariance - The state to set as the filter's - //! current state - //! - void setEstimateErrorCovariance( - const Eigen::MatrixXd& estimate_error_covariance); - - //! @brief Sets the filter's last measurement time. - //! - //! @param[in] last_measurement_time - The last measurement time of the filter - //! - void setLastMeasurementTime(const int64_t last_measurement_time); - - void setMahalanobisThreshold(const double mahalanobis_threshold); - - //! @brief Manually sets the filter's state - //! - //! @param[in] state - The state to set as the filter's current state - //! - void setState(const Eigen::VectorXd& state); - - //! @brief Ensures a given time delta is valid (helps with bag file playback - //! issues) - //! - //! @param[in] delta - The time delta, in seconds, to validate - //! - void validateDelta(double& delta); // NOLINT - - protected: - //! @brief Keeps the state Euler angles in the range [-pi, pi] - //! - virtual void wrapStateAngles(); - - //! @brief Tests if innovation is within N-sigmas of covariance. Returns true - //! if passed the test. - //! @param[in] innovation - The difference between the measurement and the - //! state - //! @param[in] innovation_covariance - The innovation error - //! @param[in] n_sigmas - Number of standard deviations that are considered - //! acceptable - //! - virtual bool checkMahalanobisThreshold( - const Eigen::VectorXd& innovation, - const Eigen::MatrixXd& innovation_covariance, const double n_sigmas); - - //! @brief Whether or not we've received any measurements - //! - bool initialized_; - - //! @brief Tracks the time the filter was last updated using a measurement. - //! - //! This value is used to monitor sensor readings with respect to the - //! sensorTimeout_. - //! We also use it to compute the time delta values for our prediction step. - //! - int64_t last_measurement_time_ns_; - - //! @brief This is the robot's state vector, which is what we are trying to - //! filter. The values in this vector are what get reported by the node. - //! - Eigen::VectorXd state_; - - //! @brief Covariance matrices can be incredibly unstable. We can - //! add a small value to it at each iteration to help maintain its - //! positive-definite property. - //! - Eigen::MatrixXd covariance_epsilon_; - - //! @brief This matrix stores the total error in our position - //! estimate (the state_ variable). - //! - Eigen::MatrixXd estimate_error_covariance_; - - double mahalanobis_distance_threshold_; -}; - -} // namespace maplab - -#endif // LOCALIZATION_FUSION_FILTER_BASE_H_ diff --git a/algorithms/localization-fusion/include/localization-fusion/filter-common.h b/algorithms/localization-fusion/include/localization-fusion/filter-common.h deleted file mode 100644 index 30525b2537..0000000000 --- a/algorithms/localization-fusion/include/localization-fusion/filter-common.h +++ /dev/null @@ -1,73 +0,0 @@ -/* - * Based on: - * - * Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution. - * 3. Neither the name of the copyright holder nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE - * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN - * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef LOCALIZATION_FUSION_FILTER_COMMON_H_ -#define LOCALIZATION_FUSION_FILTER_COMMON_H_ - -#include - -#include - -namespace maplab { - -namespace localization_fusion { -//! @brief Enumeration that defines the state vector -//! -enum StateMembers { - StateMemberX = 0, - StateMemberY, - StateMemberZ, - StateMemberRoll, - StateMemberPitch, - StateMemberYaw -}; - -//! @brief Global constants that define our state -//! vector size and offsets to groups of values -//! within that state. -const int STATE_SIZE = 6; -const int POSITION_OFFSET = StateMemberX; -const int ORIENTATION_OFFSET = StateMemberRoll; - -//! @brief Pose messages contain six variables -const int POSITION_SIZE = 3; -const int ORIENTATION_SIZE = 3; -const int POSE_SIZE = 6; - -//! @brief 2*PI -const double TAU = 2.0 * M_PI; -} // namespace localization_fusion -} // namespace maplab - -#endif // LOCALIZATION_FUSION_FILTER_COMMON_H_ diff --git a/algorithms/localization-fusion/include/localization-fusion/filter-utilities.h b/algorithms/localization-fusion/include/localization-fusion/filter-utilities.h deleted file mode 100644 index d7b3cb8e74..0000000000 --- a/algorithms/localization-fusion/include/localization-fusion/filter-utilities.h +++ /dev/null @@ -1,35 +0,0 @@ -#ifndef LOCALIZATION_FUSION_FILTER_UTILITIES_H_ -#define LOCALIZATION_FUSION_FILTER_UTILITIES_H_ - -#include -#include -#include -#include - -#include - -std::ostream& operator<<(std::ostream& os, const Eigen::MatrixXd& mat); -std::ostream& operator<<(std::ostream& os, const Eigen::VectorXd& vec); -std::ostream& operator<<(std::ostream& os, const std::vector& vec); -std::ostream& operator<<(std::ostream& os, const std::vector& vec); - -namespace maplab { - -//! @brief Utility method keeping RPY angles in the range [-pi, pi] -//! @param[in] rotation - The rotation to bind -//! @return the bounded value -//! -double clampRotation(double rotation); - -void RPYtoQuaternion( - double r, double p, double y, - Eigen::Quaterniond& q); // NOLINT - -void matrixToRPY( - const Eigen::Matrix3d& m, double& yaw, // NOLINT - double& pitch, // NOLINT - double& roll); // NOLINT - -} // namespace maplab - -#endif // LOCALIZATION_FUSION_FILTER_UTILITIES_H_ diff --git a/algorithms/localization-fusion/include/localization-fusion/localization-filter.h b/algorithms/localization-fusion/include/localization-fusion/localization-filter.h deleted file mode 100644 index 00abdaec63..0000000000 --- a/algorithms/localization-fusion/include/localization-fusion/localization-filter.h +++ /dev/null @@ -1,138 +0,0 @@ -/* - * Based on: - * - * Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution. - * 3. Neither the name of the copyright holder nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE - * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN - * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef LOCALIZATION_FUSION_LOCALIZATION_FILTER_H_ -#define LOCALIZATION_FUSION_LOCALIZATION_FILTER_H_ - -#include "localization-fusion/filter-base.h" -#include "localization-fusion/filter-common.h" - -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include -#include - -namespace maplab { - -template -class LocalizationFilter { - public: - //! @brief Constructor - //! - //! The RosFilter constructor makes sure that anyone using - //! this template is doing so with the correct object type - //! - LocalizationFilter(); - - //! @brief Destructor - //! - //! Clears out the message filters and topic subscribers. - //! - ~LocalizationFilter(); - - //! @brief Resets the filter to its initial state - //! - void reset(); - - void initialize( - const common::LocalizationResult& T_G_M_init, - const aslam::Transformation& T_M_B); - - //! @brief Callback method for receiving all localization messages - //! @param[in] localization - The Localization Result from world - base_link - //! @param[in] T_M_B_buffered - The odometry estimate from mission - base_link - //! - bool localizationCallback( - const common::LocalizationResult& localization, - const vio::ViNodeState& T_M_B_buffered); - - int64_t getLastMessageTimeNs() { - return last_message_time_; - } - - void getFusedLocalization( - common::LocalizationResult* fused_localization_result) const; - - inline bool isInitialized() const { - return filter_.getInitializedStatus(); - } - - protected: - //! @brief Converts a localization result for integration into the filter - //! @param[in] msg - The localization message to prepare - //! @param[out] localization_G_B - The localization in the desired format - //! (base_link - global) - void localizationResultToMeasurement( - const common::LocalizationResult& msg, - LocalizationFilterMeasurement& localization_G_B); // NOLINT - - void aslamTransformationToStateVector( - const aslam::Transformation& transformation, - Eigen::VectorXd& state_vector) const; // NOLINT - - std::atomic last_message_time_; - - common::LocalizationMode localization_mode_; - - private: - //! @brief inverse of the most recent odometry estimate from the buffer - aslam::Transformation T_B_M_; - - //! @brief the most recent state estimate - aslam::Transformation T_G_B_fused_; - - protected: - //! @brief Our filter (EKF, UKF, etc.) - T filter_; - - //! @brief Which entries of the filter state are being updated by a - //! measurement. - //! Currently set to true for all of them, but might be useful for extensions - //! of the filter state later on. - std::vector update_vector_; -}; - -} // namespace maplab - -#endif // LOCALIZATION_FUSION_LOCALIZATION_FILTER_H_ diff --git a/algorithms/localization-fusion/include/localization-fusion/ukf.h b/algorithms/localization-fusion/include/localization-fusion/ukf.h deleted file mode 100644 index e4d294f47e..0000000000 --- a/algorithms/localization-fusion/include/localization-fusion/ukf.h +++ /dev/null @@ -1,123 +0,0 @@ -/* - * Based on: - * - * Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution. - * 3. Neither the name of the copyright holder nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE - * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN - * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef LOCALIZATION_FUSION_UKF_H_ -#define LOCALIZATION_FUSION_UKF_H_ - -#include -#include -#include -#include - -#include "localization-fusion/filter-base.h" - -namespace maplab { - -//! @brief Unscented Kalman filter class -//! -//! Implementation of an unscenter Kalman filter (UKF). This -//! class derives from FilterBase and overrides the predict() -//! and correct() methods in keeping with the discrete time -//! UKF algorithm. The algorithm was derived from the UKF -//! Wikipedia article at -//! (http://en.wikipedia.org/wiki/Kalman_filter#Unscented_Kalman_filter) -//! ...and this paper: -//! J. J. LaViola, Jr., “A comparison of unscented and extended Kalman -//! filtering for estimating quaternion motion,” in Proc. American Control -//! Conf., Denver, CO, June 4–6, 2003, pp. 2435–2440 -//! Obtained here: http://www.cs.ucf.edu/~jjl/pubs/laviola_acc2003.pdf -//! -class Ukf : public FilterBase { - public: - //! @brief Constructor for the Ukf class - //! - //! @param[in] args - Generic argument container. It is assumed - //! that args[0] constains the alpha parameter, args[1] contains - //! the kappa parameter, and args[2] contains the beta parameter. - //! - explicit Ukf(const double alpha, const double kappa, const double beta); - - //! @brief Destructor for the Ukf class - //! - ~Ukf(); - - //! @brief Carries out the correct step in the predict/update cycle. - //! - //! @param[in] measurement - The measurement to fuse with our estimate - //! - bool correct( - const LocalizationFilterMeasurement& measurement, - const std::vector& update_vector); - - //! @brief Carries out the predict step in the predict/update cycle. - //! - //! Projects the state and error matrices forward using a model of - //! the vehicle's motion. - //! - //! @param[in] referenceTime - The time at which the prediction is being made - //! @param[in] odom_prediction - The predicted state from the odometry - //! - void predict( - const LocalizationFilterPrediction& odom_prediction = - LocalizationFilterPrediction()); - - protected: - //! @brief The UKF sigma points - //! - //! Used to sample possible next states during prediction. - //! - std::vector sigma_points_; - - //! @brief This matrix is used to generate the sigmaPoints_ - //! - Eigen::MatrixXd weighted_covariance_sqrt_; - - //! @brief The weights associated with each sigma point when generating - //! a new state - //! - std::vector sigma_state_weights_; - - //! @brief The weights associated with each sigma point when calculating - //! a predicted estimateErrorCovariance_ - //! - std::vector sigma_covariance_weights_; - - //! @brief Used in weight generation for the sigma points - //! - double lambda_; -}; - -} // namespace maplab - -#endif // LOCALIZATION_FUSION_UKF_H_ diff --git a/algorithms/localization-fusion/package.xml b/algorithms/localization-fusion/package.xml deleted file mode 100644 index 76896392a3..0000000000 --- a/algorithms/localization-fusion/package.xml +++ /dev/null @@ -1,20 +0,0 @@ - - - localization_fusion - 2.2.0 - A Kalman Filter to fuse 6DoF localization results with odometry. - maplab-developers - Apache 2.0 - - catkin_simple - catkin - - aslam_cv_common - eigen_catkin - eigen_checks - gflags_catkin - glog_catkin - maplab_common - maplab_test_data - vio_common - diff --git a/algorithms/localization-fusion/src/filter-base.cc b/algorithms/localization-fusion/src/filter-base.cc deleted file mode 100644 index b6044264b8..0000000000 --- a/algorithms/localization-fusion/src/filter-base.cc +++ /dev/null @@ -1,199 +0,0 @@ -/* - * Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution. - * 3. Neither the name of the copyright holder nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE - * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN - * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include -#include -#include -#include -#include - -#include "localization-fusion/filter-base.h" -#include "localization-fusion/filter-common.h" - -DEFINE_double( - loc_filter_malahanobis_threshold, 5.0, - "The threshold for malahanobis distance based outlier rejection. [number " - "of sigmas]"); - -namespace maplab { -FilterBase::FilterBase() - : initialized_(false), - last_measurement_time_ns_(0.0), - state_(localization_fusion::STATE_SIZE), - covariance_epsilon_( - localization_fusion::STATE_SIZE, localization_fusion::STATE_SIZE), - estimate_error_covariance_( - localization_fusion::STATE_SIZE, localization_fusion::STATE_SIZE), - mahalanobis_distance_threshold_(FLAGS_loc_filter_malahanobis_threshold) { - reset(); -} - -FilterBase::~FilterBase() {} - -void FilterBase::reset() { - initialized_ = false; - - // Clear the state and predicted state - state_.setZero(); - - // Set the estimate error covariance. We want our measurements - // to be accepted rapidly when the filter starts, so we should - // initialize the state's covariance with large values. - estimate_error_covariance_.setIdentity(); - estimate_error_covariance_ *= 1e-9; - - // Set the epsilon matrix to be a matrix with small values on the diagonal - // It is used to maintain the positive-definite property of the covariance - covariance_epsilon_.setIdentity(); - covariance_epsilon_ *= 0.001; - - // Initialize our measurement time - last_measurement_time_ns_ = aslam::time::getInvalidTime(); -} - -const Eigen::MatrixXd& FilterBase::getEstimateErrorCovariance() const { - return estimate_error_covariance_; -} - -bool FilterBase::getInitializedStatus() const { - return initialized_; -} - -int64_t FilterBase::getLastMeasurementTime() const { - return last_measurement_time_ns_; -} - -const Eigen::VectorXd& FilterBase::getState() const { - return state_; -} - -bool FilterBase::processMeasurement( - const LocalizationFilterMeasurement& measurement, - const LocalizationFilterPrediction& odom_prediction, - const std::vector& updateVector) { - bool success = false; - // If we've had a previous reading, then go through the predict/update - // cycle. Otherwise, set our state and covariance to whatever we get - // from this measurement. - if (initialized_) { - // Determine how much time has passed since our last measurement - double delta = - aslam::time::to_seconds(measurement.time_ - last_measurement_time_ns_); - - if (delta >= 0) { - validateDelta(delta); - predict(odom_prediction); - success = correct(measurement, updateVector); - } else { - LOG(WARNING) << "Jump back in time detected. Ignoring measurement."; - } - } else { - VLOG(1) << "First measurement. Initializing filter."; - - // Initialize the filter, but only with the values we're using - size_t measurementLength = updateVector.size(); - for (size_t i = 0; i < measurementLength; ++i) { - state_[i] = (updateVector[i] ? measurement.measurement_[i] : state_[i]); - } - - // Same for covariance - for (size_t i = 0; i < measurementLength; ++i) { - for (size_t j = 0; j < measurementLength; ++j) { - estimate_error_covariance_(i, j) = - (updateVector[i] && updateVector[j] - ? measurement.covariance_(i, j) - : estimate_error_covariance_(i, j)); - } - } - initialized_ = true; - success = true; - } - if (success) { - last_measurement_time_ns_ = measurement.time_; - } - return success; -} - -void FilterBase::setEstimateErrorCovariance( - const Eigen::MatrixXd& estimate_error_covariance) { - estimate_error_covariance_ = estimate_error_covariance; -} - -void FilterBase::setLastMeasurementTime(const int64_t last_measurement_time) { - last_measurement_time_ns_ = last_measurement_time; -} - -void FilterBase::setMahalanobisThreshold(const double mahalanobis_threshold) { - mahalanobis_distance_threshold_ = mahalanobis_threshold; -} - -void FilterBase::setState(const Eigen::VectorXd& state) { - CHECK_EQ(state.size(), localization_fusion::STATE_SIZE); - state_ = state; -} - -void FilterBase::validateDelta(double& delta) { - // This handles issues with ROS time when use_sim_time is on and we're playing - // from bags. - if (delta > 100000.0) { - LOG(WARNING) << "Localization filter time step was very large: " << delta - << "s. This might be ok for infrequent localizations." - << "Otherwise please verify sensor timings."; - } -} - -void FilterBase::wrapStateAngles() { - state_(localization_fusion::StateMemberRoll) = - clampRotation(state_(localization_fusion::StateMemberRoll)); - state_(localization_fusion::StateMemberPitch) = - clampRotation(state_(localization_fusion::StateMemberPitch)); - state_(localization_fusion::StateMemberYaw) = - clampRotation(state_(localization_fusion::StateMemberYaw)); -} - -bool FilterBase::checkMahalanobisThreshold( - const Eigen::VectorXd& innovation, - const Eigen::MatrixXd& innovation_covariance, const double n_sigmas) { - double sqMahalanobis = innovation.dot(innovation_covariance * innovation); - double threshold = n_sigmas * n_sigmas; - - if (sqMahalanobis >= threshold) { - LOG(WARNING) << "Innovation mahalanobis distance test failed. Squared " - << "Mahalanobis is: " << sqMahalanobis - << " Threshold is: " << threshold; - - return false; - } - - return true; -} -} // namespace maplab diff --git a/algorithms/localization-fusion/src/filter-utilities.cc b/algorithms/localization-fusion/src/filter-utilities.cc deleted file mode 100644 index d7be04fa6c..0000000000 --- a/algorithms/localization-fusion/src/filter-utilities.cc +++ /dev/null @@ -1,65 +0,0 @@ -#include "localization-fusion/filter-utilities.h" -#include "localization-fusion/filter-common.h" - -#include -#include - -namespace maplab { - -double clampRotation(double rotation) { - CHECK(!std::isnan(rotation)); - CHECK(!std::isinf(rotation)); - rotation = fmod(rotation + M_PI, localization_fusion::TAU); - if (rotation < 0) - rotation += localization_fusion::TAU; - return rotation - M_PI; -} - -void RPYtoQuaternion( - double r, double p, double y, - Eigen::Quaterniond& q) { // NOLINT - double halfYaw = y * 0.5f; - double halfPitch = p * 0.5f; - double halfRoll = r * 0.5f; - double cosYaw = cos(halfYaw); - double sinYaw = sin(halfYaw); - double cosPitch = cos(halfPitch); - double sinPitch = sin(halfPitch); - double cosRoll = cos(halfRoll); - double sinRoll = sin(halfRoll); - q.x() = sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw; - q.y() = cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw; - q.z() = cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw; - q.w() = cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw; -} - -void matrixToRPY( - const Eigen::Matrix3d& m, double& yaw, // NOLINT - double& pitch, // NOLINT - double& roll) { // NOLINT - // Check that pitch is not at a singularity - if (abs(m(2, 0)) >= 1) { - yaw = 0; - - // From difference of angles formula - if (m(2, 0) < 0) { - // gimbal locked down - double delta = atan2(m(0, 1), m(0, 2)); - pitch = M_PI / 2.0; - roll = delta; - } else { - // gimbal locked up - double delta = atan2(-m(0, 1), -m(0, 2)); - pitch = -1.0 * M_PI / 2.0; - roll = delta; - } - } else { - pitch = -1.0 * asin(m(2, 0)); - - roll = atan2(m(2, 1) / cos(pitch), m(2, 2) / cos(pitch)); - - yaw = atan2(m(1, 0) / cos(pitch), m(0, 0) / cos(pitch)); - } -} - -} // namespace maplab diff --git a/algorithms/localization-fusion/src/localization-filter.cc b/algorithms/localization-fusion/src/localization-filter.cc deleted file mode 100644 index 7b4a5ab6e2..0000000000 --- a/algorithms/localization-fusion/src/localization-filter.cc +++ /dev/null @@ -1,229 +0,0 @@ -/* - * Based on: - * - * Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution. - * 3. Neither the name of the copyright holder nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE - * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN - * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include -#include -#include -#include -#include -#include - -#include "localization-fusion/filter-utilities.h" -#include "localization-fusion/localization-filter.h" -#include "localization-fusion/ukf.h" - -DEFINE_bool( - loc_filter_reset_on_time_jump, false, - "Whether to reset the localization filter if a localization arrives out of " - "order."); - -DEFINE_double( - loc_filter_ukf_alpha, 0.001, - "The alpha and kappa variables control the spread of the sigma points. " - "Unless you are familiar with UKFs, it's probably a good idea to leave " - "these alone."); -DEFINE_double( - loc_filter_ukf_kappa, 2, - "The alpha and kappa variables control the spread of the sigma points. " - "Unless you are familiar with UKFs, it's probably a good idea to leave " - "these alone."); -DEFINE_double( - loc_filter_ukf_beta, 2, - "The beta variable relates to the distribution of the state vector. Again, " - "it's probably best to leave this alone if you're uncertain. Defaults to 2 " - "if unspecified."); - -namespace maplab { -template -LocalizationFilter::LocalizationFilter() - : last_message_time_(aslam::time::getInvalidTime()), - localization_mode_(common::LocalizationMode::kUnknown), - filter_( - FLAGS_loc_filter_ukf_alpha, FLAGS_loc_filter_ukf_kappa, - FLAGS_loc_filter_ukf_beta), - update_vector_(localization_fusion::STATE_SIZE, 0u) { - // set update vector values to 6DoF pose for all inputs - update_vector_[localization_fusion::StateMemberX] = 1u; - update_vector_[localization_fusion::StateMemberY] = 1u; - update_vector_[localization_fusion::StateMemberZ] = 1u; - update_vector_[localization_fusion::StateMemberRoll] = 1u; - update_vector_[localization_fusion::StateMemberPitch] = 1u; - update_vector_[localization_fusion::StateMemberYaw] = 1u; -} - -template -LocalizationFilter::~LocalizationFilter() {} - -template -void LocalizationFilter::reset() { - // reset filter to uninitialized state - last_message_time_ = aslam::time::getInvalidTime(); - filter_.reset(); -} - -template -bool LocalizationFilter::localizationCallback( - const common::LocalizationResult& localization, - const vio::ViNodeState& T_M_B_buffered) { - bool success = false; - - // Make sure this message is newer than the last one - if (localization.timestamp_ns >= last_message_time_) { - if (filter_.getInitializedStatus()) { - // we can proceed safely - last_message_time_ = localization.timestamp_ns; - localization_mode_ = localization.localization_mode; - - // Convert the pose measurement - LocalizationFilterMeasurement pose_measurement_G_B; - localizationResultToMeasurement(localization, pose_measurement_G_B); - - // Convert the odometry to a LocalizationFilterPrediction - aslam::Transformation T_G_B_estimated = - T_G_B_fused_ * T_B_M_ * T_M_B_buffered.get_T_M_I(); - LocalizationFilterPrediction odom_as_prediction_G_B; - aslamTransformationToStateVector( - T_G_B_estimated, odom_as_prediction_G_B.predicted_state_); - odom_as_prediction_G_B.covariance_ = T_M_B_buffered.getPoseCovariance(); - - if (filter_.processMeasurement( - pose_measurement_G_B, odom_as_prediction_G_B, update_vector_)) { - // now that the update has been completed, we can save - // the most recent odometry estimate and state estimates for the next - // iteration - T_B_M_ = T_M_B_buffered.get_T_M_I().inverse(); - - Eigen::VectorXd fused_state = filter_.getState(); - Eigen::Quaterniond q_G_B; - RPYtoQuaternion( - fused_state(localization_fusion::StateMemberRoll), - fused_state(localization_fusion::StateMemberPitch), - fused_state(localization_fusion::StateMemberYaw), q_G_B); - T_G_B_fused_ = aslam::Transformation(q_G_B, fused_state.head(3)); - success = true; - } - } else { - VLOG(1) << "Initializing localization filter directly from a " - << "measurement. T_G_M:\n" - << localization.T_G_M; - initialize(localization, T_M_B_buffered.get_T_M_I()); - success = true; - } - } else if (FLAGS_loc_filter_reset_on_time_jump) { - VLOG(1) << "Time jump detected. Resetting filter. (message time: " - << localization.timestamp_ns << ")"; - reset(); - } else { - LOG(WARNING) << "The message has a timestamp before that of the previous " - "message received," - << " this message will be ignored. This may indicate a bad " - "timestamp. (message time: " - << localization.timestamp_ns << ")"; - } - return success; -} - -template -void LocalizationFilter::aslamTransformationToStateVector( - const aslam::Transformation& transformation, - Eigen::VectorXd& state_vector) const { // NOLINT - state_vector = Eigen::VectorXd::Zero(localization_fusion::STATE_SIZE); - state_vector(localization_fusion::StateMemberX) = - transformation.getPosition()[0]; - state_vector(localization_fusion::StateMemberY) = - transformation.getPosition()[1]; - state_vector(localization_fusion::StateMemberZ) = - transformation.getPosition()[2]; - - // The filter needs roll, pitch, and yaw values instead of quaternions - double roll, pitch, yaw; - matrixToRPY(transformation.getRotationMatrix(), yaw, pitch, roll); - state_vector(localization_fusion::StateMemberRoll) = roll; - state_vector(localization_fusion::StateMemberPitch) = pitch; - state_vector(localization_fusion::StateMemberYaw) = yaw; -} - -template -void LocalizationFilter::localizationResultToMeasurement( - const common::LocalizationResult& msg, - LocalizationFilterMeasurement& localization_G_B) { // NOLINT - - localization_G_B.covariance_ = msg.T_G_B_covariance; - - // copy the other fields over as well - localization_G_B.time_ = msg.timestamp_ns; - aslamTransformationToStateVector(msg.T_G_B, localization_G_B.measurement_); -} - -template -void LocalizationFilter::getFusedLocalization( - common::LocalizationResult* fused_localization_result) const { - CHECK_NOTNULL(fused_localization_result); - fused_localization_result->timestamp_ns = last_message_time_; - fused_localization_result->localization_mode = localization_mode_; - - fused_localization_result->T_G_B = T_G_B_fused_; - fused_localization_result->is_T_G_B_set = true; - - // T_B_M_previous is updated along with the T_G_B_fused - fused_localization_result->T_G_M = T_G_B_fused_ * T_B_M_; - fused_localization_result->is_T_G_M_set = true; -} - -template -void LocalizationFilter::initialize( - const common::LocalizationResult& localization_result, - const aslam::Transformation& T_M_B) { - reset(); - - T_G_B_fused_ = localization_result.T_G_M * T_M_B; - T_B_M_ = T_M_B.inverse(); - - LocalizationFilterMeasurement initialMeasurement; - aslamTransformationToStateVector( - T_G_B_fused_, initialMeasurement.measurement_); - initialMeasurement.time_ = localization_result.timestamp_ns; - initialMeasurement.covariance_ = localization_result.T_G_B_covariance; - - filter_.processMeasurement( - initialMeasurement, LocalizationFilterPrediction(), update_vector_); - last_message_time_ = localization_result.timestamp_ns; - localization_mode_ = localization_result.localization_mode; -} - -} // namespace maplab - -// Instantiations of classes is required when template class code -// is placed in a .cpp file. -template class maplab::LocalizationFilter; diff --git a/algorithms/localization-fusion/src/ukf.cc b/algorithms/localization-fusion/src/ukf.cc deleted file mode 100644 index 2eb1660315..0000000000 --- a/algorithms/localization-fusion/src/ukf.cc +++ /dev/null @@ -1,282 +0,0 @@ -/* - * Based on: - * - * Copyright (c) 2014, 2015, 2016, Charles River Analytics, Inc. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials provided - * with the distribution. - * 3. Neither the name of the copyright holder nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS - * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE - * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, - * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER - * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN - * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include -#include -#include -#include -#include -#include - -#include -#include - -#include "localization-fusion/filter-common.h" -#include "localization-fusion/ukf.h" - -namespace maplab { -Ukf::Ukf(const double alpha, const double kappa, const double beta) - : FilterBase() { - // Must initialize filter base! - - size_t sigmaCount = (localization_fusion::STATE_SIZE << 1) + 1; - sigma_points_.resize( - sigmaCount, Eigen::VectorXd(localization_fusion::STATE_SIZE)); - - // Prepare constants - lambda_ = alpha * alpha * kappa; - - sigma_state_weights_.resize(sigmaCount); - sigma_covariance_weights_.resize(sigmaCount); - - // initialize sigma weights - // set sigma points to zero - sigma_state_weights_[0] = - (lambda_ - localization_fusion::STATE_SIZE) / lambda_; - sigma_covariance_weights_[0] = - sigma_state_weights_[0] + (1 - (alpha * alpha) + beta); - sigma_points_[0].setZero(); - for (size_t i = 1; i < sigmaCount; ++i) { - sigma_points_[i].setZero(); - sigma_state_weights_[i] = 1 / (2 * lambda_); - sigma_covariance_weights_[i] = sigma_state_weights_[i]; - } -} - -Ukf::~Ukf() {} - -bool Ukf::correct( - const LocalizationFilterMeasurement& measurement, - const std::vector& update_vector) { - // We don't want to update everything, so we need to build matrices that only - // update - // the measured parts of our state vector - - // First, determine how many state vector values we're updating - std::vector updateIndices; - for (size_t i = 0; i < update_vector.size(); ++i) { - if (update_vector[i]) { - // Handle nan and inf values in measurements - if (std::isnan(measurement.measurement_(i))) { - LOG(WARNING) << "Measurement value at index " << i - << " was nan. Excluding from update."; - } else if (std::isinf(measurement.measurement_(i))) { - LOG(WARNING) << "Measurement value at index " << i - << " was inf. Excluding from update."; - } else { - updateIndices.push_back(i); - } - } - } - - size_t updateSize = updateIndices.size(); - if (updateSize < 1) { - LOG(ERROR) << "No state variables can be updated. Please verify that the " - "incoming measurement is valid."; - return false; - } - - // Now set up the relevant matrices - Eigen::VectorXd stateSubset(updateSize); // x (in most literature) - Eigen::VectorXd measurementSubset(updateSize); // z - Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize); // R - Eigen::MatrixXd stateToMeasurementSubset( - updateSize, localization_fusion::STATE_SIZE); // H - Eigen::MatrixXd kalmanGainSubset( - localization_fusion::STATE_SIZE, updateSize); // K - Eigen::VectorXd innovationSubset(updateSize); // z - Hx - Eigen::VectorXd predictedMeasurement(updateSize); - Eigen::VectorXd sigmaDiff(updateSize); - Eigen::MatrixXd predictedMeasCovar(updateSize, updateSize); - Eigen::MatrixXd crossCovar(localization_fusion::STATE_SIZE, updateSize); - - std::vector sigmaPointMeasurements( - sigma_points_.size(), Eigen::VectorXd(updateSize)); - - stateSubset.setZero(); - measurementSubset.setZero(); - measurementCovarianceSubset.setZero(); - stateToMeasurementSubset.setZero(); - kalmanGainSubset.setZero(); - innovationSubset.setZero(); - predictedMeasurement.setZero(); - predictedMeasCovar.setZero(); - crossCovar.setZero(); - - // Now build the sub-matrices from the full-sized matrices - for (size_t i = 0; i < updateSize; ++i) { - measurementSubset(i) = measurement.measurement_(updateIndices[i]); - stateSubset(i) = state_(updateIndices[i]); - - for (size_t j = 0; j < updateSize; ++j) { - measurementCovarianceSubset(i, j) = - measurement.covariance_(updateIndices[i], updateIndices[j]); - } - - // Handle negative (read: bad) covariances in the measurement. Rather - // than exclude the measurement or make up a covariance, just take - // the absolute value. - if (measurementCovarianceSubset(i, i) < 0) { - LOG(WARNING) << "Negative covariance for index " << i - << " of measurement (value is" - << measurementCovarianceSubset(i, i) - << "). Using absolute value..."; - - measurementCovarianceSubset(i, i) = - ::fabs(measurementCovarianceSubset(i, i)); - } - - // If the measurement variance for a given variable is very - // near 0 (as in e-50 or so) and the variance for that - // variable in the covariance matrix is also near zero, then - // the Kalman gain computation will blow up. Really, no - // measurement can be completely without error, so add a small - // amount in that case. - if (measurementCovarianceSubset(i, i) < 1e-9) { - measurementCovarianceSubset(i, i) = 1e-9; - LOG(WARNING) - << "The measurement had very small error covariance for index " - << updateIndices[i] - << ". Adding some noise to maintain filter stability."; - } - } - - // The state-to-measurement function, h, will now be a measurement_size x - // full_state_size - // matrix, with ones in the (i, i) locations of the values to be updated - for (size_t i = 0; i < updateSize; ++i) { - stateToMeasurementSubset(i, updateIndices[i]) = 1; - } - - // (1) Generate sigma points, use them to generate a predicted measurement - for (size_t sigmaInd = 0; sigmaInd < sigma_points_.size(); ++sigmaInd) { - sigmaPointMeasurements[sigmaInd] = - stateToMeasurementSubset * sigma_points_[sigmaInd]; - predictedMeasurement.noalias() += - sigma_state_weights_[sigmaInd] * sigmaPointMeasurements[sigmaInd]; - } - - // (2) Use the sigma point measurements and predicted measurement to compute a - // predicted - // measurement covariance matrix P_zz and a state/measurement cross-covariance - // matrix P_xz. - for (size_t sigmaInd = 0; sigmaInd < sigma_points_.size(); ++sigmaInd) { - sigmaDiff = sigmaPointMeasurements[sigmaInd] - predictedMeasurement; - predictedMeasCovar.noalias() += sigma_covariance_weights_[sigmaInd] * - (sigmaDiff * sigmaDiff.transpose()); - crossCovar.noalias() += - sigma_covariance_weights_[sigmaInd] * - ((sigma_points_[sigmaInd] - state_) * sigmaDiff.transpose()); - } - - // (3) Compute the Kalman gain, making sure to use the actual measurement - // covariance: K = P_xz * (P_zz + R)^-1 - Eigen::MatrixXd invInnovCov = - (predictedMeasCovar + measurementCovarianceSubset).inverse(); - kalmanGainSubset = crossCovar * invInnovCov; - - // (4) Apply the gain to the difference between the actual and predicted - // measurements: x = x + K(z - z_hat) - innovationSubset = (measurementSubset - predictedMeasurement); - - // Wrap angles in the innovation - for (size_t i = 0; i < updateSize; ++i) { - if (updateIndices[i] == localization_fusion::StateMemberRoll || - updateIndices[i] == localization_fusion::StateMemberPitch || - updateIndices[i] == localization_fusion::StateMemberYaw) { - innovationSubset(i) = clampRotation(innovationSubset(i)); - } - } - - // (5) Check Mahalanobis distance of innovation - if (checkMahalanobisThreshold( - innovationSubset, invInnovCov, mahalanobis_distance_threshold_)) { - state_.noalias() += kalmanGainSubset * innovationSubset; - - // (6) Compute the new estimate error covariance P = P - (K * P_zz * K') - estimate_error_covariance_.noalias() -= - (kalmanGainSubset * predictedMeasCovar * kalmanGainSubset.transpose()); - - wrapStateAngles(); - return true; - } - return false; -} - -void Ukf::predict( - const LocalizationFilterPrediction& odom_prediction) { - // (1) Take the square root of a small fraction of the - // estimateErrorCovariance_ using cholesky for LL' decomposition - // utilize the fact that: cholesky(n * M) = sqrt(n) * cholesky(M), for scalar - // n, matrix M - weighted_covariance_sqrt_ = - (lambda_ * estimate_error_covariance_).llt().matrixL(); - - // (2) Compute sigma points based on the odometry prediction. - // Note, we don't use a transfer function (as it is typically done) but the - // odometry estimate instead - - // First sigma point is the predicted odom state - sigma_points_[0] = odom_prediction.predicted_state_; - - // Next localization_fusion::STATE_SIZE sigma points are state + - // weightedCovarSqrt_[ith column] - // localization_fusion::STATE_SIZE sigma points after that are state - - // weightedCovarSqrt_[ith - // column] - for (size_t sigmaInd = 0; sigmaInd < localization_fusion::STATE_SIZE; - ++sigmaInd) { - sigma_points_[sigmaInd + 1] = - (odom_prediction.predicted_state_ + - weighted_covariance_sqrt_.col(sigmaInd)); - sigma_points_[sigmaInd + 1 + localization_fusion::STATE_SIZE] = - (odom_prediction.predicted_state_ - - weighted_covariance_sqrt_.col(sigmaInd)); - } - - // (3) Sum the weighted sigma points to generate a new state prediction - state_.setZero(); - for (size_t sigmaInd = 0; sigmaInd < sigma_points_.size(); ++sigmaInd) { - state_.noalias() += - sigma_state_weights_[sigmaInd] * sigma_points_[sigmaInd]; - } - - // (4) covariance prediction - estimate_error_covariance_ = odom_prediction.covariance_; - - // Keep the angles bounded - wrapStateAngles(); -} - -} // namespace maplab diff --git a/algorithms/localization-fusion/test/test-ukf-2d-performance.cc b/algorithms/localization-fusion/test/test-ukf-2d-performance.cc deleted file mode 100644 index 2fa321db85..0000000000 --- a/algorithms/localization-fusion/test/test-ukf-2d-performance.cc +++ /dev/null @@ -1,172 +0,0 @@ -#include -#include -#include -#include "localization-fusion/localization-filter.h" -#include "localization-fusion/ukf.h" - -/// To expose the filter for access in the unittest methods -class UkfPassThrough2d : public maplab::LocalizationFilter { - public: - UkfPassThrough2d() : maplab::LocalizationFilter() {} - - maplab::Ukf& getFilter() { - return filter_; - } - - void setUpdateVectorTo2d() { - update_vector_[maplab::localization_fusion::StateMemberX] = 1; - update_vector_[maplab::localization_fusion::StateMemberY] = 1; - update_vector_[maplab::localization_fusion::StateMemberZ] = 0; - update_vector_[maplab::localization_fusion::StateMemberRoll] = 0; - update_vector_[maplab::localization_fusion::StateMemberPitch] = 0; - update_vector_[maplab::localization_fusion::StateMemberYaw] = 0; - } -}; - -class UKFLocalizationTest2d : public ::testing::Test { - public: - virtual void SetUp() { - localization_fuser_.reset(); - localization_fuser_.setUpdateVectorTo2d(); - - // fill buffer from data, get ground truth values as well - LOG(INFO) << "Loading odometry data."; - const std::string odom_file_name = - "./localization_fusion_test_data/odom-estimate.txt"; - std::ifstream in_stream(odom_file_name.c_str(), std::ifstream::in); - std::string line; - std::vector odom_errs; - - while (getline(in_stream, line)) { - std::istringstream iss(line); - - double x, y, x_gt_odom, y_gt_odom, timestamp_ms; - iss >> timestamp_ms; - iss >> x; - iss >> y; - iss >> x_gt_odom; - iss >> y_gt_odom; - int64_t timestamp_ns = aslam::time::from_microseconds(timestamp_ms); - double err = sqrt( - (x_gt_odom - x) * (x_gt_odom - x) + - (y_gt_odom - y) * (y_gt_odom - y)); - odom_errs.push_back(err); - addViNodeToBuffer(timestamp_ns, x, y); - } - odom_rms = std::accumulate(odom_errs.begin(), odom_errs.end(), 0.0) / - static_cast(odom_errs.size()); - in_stream.close(); - - // get lidar measurements and ground truth data - LOG(INFO) << "Loading lidar measurement data."; - const std::string lidar_file_name = - "./localization_fusion_test_data/lidar-localizations.txt"; - std::ifstream lidar_in_stream(lidar_file_name.c_str(), std::ifstream::in); - - Eigen::MatrixXd covariance_lidar = Eigen::MatrixXd::Zero( - maplab::localization_fusion::STATE_SIZE, - maplab::localization_fusion::STATE_SIZE); - covariance_lidar.operator()(0, 0) = 0.0225; - covariance_lidar.operator()(1, 1) = 0.0225; - - while (getline(lidar_in_stream, line)) { - std::istringstream iss(line); - double x, y, x_gt, y_gt, timestamp_ms; - iss >> timestamp_ms; - iss >> x; - iss >> y; - iss >> x_gt; - iss >> y_gt; - int64_t timestamp_ns = aslam::time::from_microseconds(timestamp_ms); - // wrap ground truth into Measurement - Eigen::VectorXd measurement = - Eigen::VectorXd::Zero(maplab::localization_fusion::STATE_SIZE); - measurement[maplab::localization_fusion::StateMemberX] = x_gt; - measurement[maplab::localization_fusion::StateMemberY] = y_gt; - - maplab::LocalizationFilterMeasurement gt_meas; - gt_meas.time_ = timestamp_ns; - gt_meas.measurement_ = measurement; - ground_truth_data.push_back(gt_meas); - - // wrap lidar measurement into ML format - common::LocalizationResult lidar_measurement; - lidar_measurement.timestamp_ns = timestamp_ns; - lidar_measurement.T_G_B.getPosition() = kindr::minimal::Position(x, y, 0); - lidar_measurement.T_G_M.setIdentity(); - lidar_measurement.T_G_B_covariance = covariance_lidar; - lidar_data.push_back(lidar_measurement); - } - lidar_in_stream.close(); - } - UKFLocalizationTest2d() - : buffer_T_M_B_( - aslam::time::seconds(100u), aslam::time::milliseconds(500)), - localization_fuser_() { - odometry_covariance_per_s_ = Eigen::Matrix::Zero(); - // clang-format off - odometry_covariance_per_s_ << 0.05, 0.00, 0.00, 0.00, 0.00, 0.00, - 0.00, 0.05, 0.00, 0.00, 0.00, 0.00, - 0.00, 0.00, 0.06, 0.00, 0.00, 0.00, - 0.00, 0.00, 0.00, 0.03, 0.00, 0.00, - 0.00, 0.00, 0.00, 0.00, 0.03, 0.00, - 0.00, 0.00, 0.00, 0.00, 0.00, 0.06; - // clang-format on - } - - protected: - void addViNodeToBuffer( - const int64_t timestamp_ns, const double x, const double y) { - vio::ViNodeState vi_node; - vi_node.set_T_M_I( - aslam::Transformation(aslam::Position3D(x, y, 0), aslam::Quaternion())); - vi_node.set_v_M_I(Eigen::Vector3d(0, 0, 0)); - vi_node.setAccBias(Eigen::Vector3d(0, 0, 0)); - vi_node.setGyroBias(Eigen::Vector3d(0, 0, 0)); - vi_node.setTimestamp(timestamp_ns); - buffer_T_M_B_.bufferOdometryEstimate(vi_node); - } - aslam::TransformationCovariance odometry_covariance_per_s_; - std::vector ground_truth_data; - std::vector lidar_data; - - double odom_rms; - - vio_common::PoseLookupBuffer buffer_T_M_B_; - - UkfPassThrough2d localization_fuser_; -}; - -TEST_F(UKFLocalizationTest2d, real_data_2d) { - vio::ViNodeState T_M_B; - std::vector rms; - LOG(INFO) << "Starting testing."; - for (size_t i = 0; i < lidar_data.size(); ++i) { - const common::LocalizationResult loc = lidar_data[i]; - if (buffer_T_M_B_.interpolateViNodeStateAt(loc.timestamp_ns, &T_M_B) == - vio_common::PoseLookupBuffer::ResultStatus::kSuccessInterpolated) { - if (localization_fuser_.getFilter().getInitializedStatus()) { - double delta_s = aslam::time::to_seconds( - loc.timestamp_ns - localization_fuser_.getLastMessageTimeNs()); - aslam::TransformationCovariance odometry_covariance; - odometry_covariance = odometry_covariance_per_s_ * delta_s; - T_M_B.setPoseCovariance(odometry_covariance); - Eigen::VectorXd measurement; - localization_fuser_.localizationCallback(loc, T_M_B); - measurement = localization_fuser_.getFilter().getState(); - const double rms_measurement = - (ground_truth_data[i].measurement_ - measurement).head(2).norm(); - rms.push_back(rms_measurement); - } else { - localization_fuser_.initialize(loc, T_M_B.get_T_M_I()); - } - } - } - // We clearly expect the filter to outperform the odometry prior. - const double rms_error = std::accumulate(rms.begin(), rms.end(), 0.0) / - static_cast(rms.size()); - LOG(INFO) << "rms_filter: " << rms_error << " vs. odometry_rms: " << odom_rms; - ASSERT_LT(rms_error, odom_rms); -} - -MAPLAB_UNITTEST_ENTRYPOINT diff --git a/algorithms/localization-fusion/test/test-ukf-filter.cc b/algorithms/localization-fusion/test/test-ukf-filter.cc deleted file mode 100644 index b098ee5f43..0000000000 --- a/algorithms/localization-fusion/test/test-ukf-filter.cc +++ /dev/null @@ -1,224 +0,0 @@ -#include -#include -#include -#include -#include -#include -#include "localization-fusion/localization-filter.h" -#include "localization-fusion/ukf.h" - -// https://stackoverflow.com/questions/7115459/c-rand-and-srand-gets-different-output-on-different-machines -static unsigned long int next = 1; // NOLINT - -int test_rand(void) { - // RAND_MAX assumed to be 32767 - next = next * 1103515245 + 12345; - return (unsigned int)(next / 65536) % 32768; -} - -void test_srand(unsigned int seed) { - next = seed; -} - -double test_rand_double(void) { - return static_cast(test_rand()) / static_cast(RAND_MAX); -} - -class UkfPassThrough : public maplab::LocalizationFilter { - public: - UkfPassThrough() : maplab::LocalizationFilter() {} - - maplab::Ukf& getFilter() { - return filter_; - } - - void processMeasurement( - const maplab::LocalizationFilterMeasurement& measurement, - const maplab::LocalizationFilterPrediction& odom_prediction) { - filter_.processMeasurement(measurement, odom_prediction, update_vector_); - } - - void setMahalanobisThreshold(double threshold) { - filter_.setMahalanobisThreshold(threshold); - } -}; - -class UKFLocalizationTest : public ::testing::Test { - public: - UKFLocalizationTest() - : buffer_T_M_B_( - aslam::time::seconds(30u), aslam::time::milliseconds(500)), - localization_fuser_() {} - - protected: - virtual void SetUp() { - localization_fuser_.reset(); - // fill buffer with random stuff - for (int64_t timestamp_ms = 0; timestamp_ms <= kMaxViNodeTimestampMs; - ++timestamp_ms) { - int64_t timestamp_ns = timestamp_ms * 1e6; - addViNodeToBuffer(timestamp_ns); - test_srand(42); - } - } - - maplab::Ukf& getFilter() { - return localization_fuser_.getFilter(); - } - - void addViNodeToBuffer(const int64_t timestamp_ns) { - vio::ViNodeState vi_node; - vi_node.set_T_M_I(aslam::Transformation( - aslam::Position3D(timestamp_ns, 0, 0), aslam::Quaternion())); - vi_node.set_v_M_I(Eigen::Vector3d(0, timestamp_ns, 0)); - vi_node.setAccBias(Eigen::Vector3d(0, 0, timestamp_ns)); - vi_node.setGyroBias( - Eigen::Vector3d(timestamp_ns, kGyroBiasYOffset + timestamp_ns, 0)); - vi_node.setTimestamp(timestamp_ns); - buffer_T_M_B_.bufferOdometryEstimate(vi_node); - } - - vio_common::PoseLookupBuffer buffer_T_M_B_; - - UkfPassThrough localization_fuser_; - - private: - static constexpr int64_t kMaxViNodeTimestampMs = 500; - static constexpr size_t kGyroBiasYOffset = 1000u; -}; - -TEST_F(UKFLocalizationTest, rpy_to_from) { - Eigen::Vector3d t(0, 0, 0); - for (int i = 0; i < 10000; ++i) { - Eigen::Quaterniond q, q_random; - q_random.x() = test_rand_double(); - q_random.y() = test_rand_double(); - q_random.z() = test_rand_double(); - q_random.w() = test_rand_double(); - q_random.normalize(); - - aslam::Transformation tmp(q_random, t); - double y, p, r; - maplab::matrixToRPY(tmp.getRotationMatrix().eval(), y, p, r); - maplab::RPYtoQuaternion(r, p, y, q); - - // if everything is correct, this should be a unit quaternion - const Eigen::Quaterniond q2 = q_random.conjugate() * q; - - ASSERT_NEAR(std::abs(q2.w()), 1.0, 1E-4); - ASSERT_NEAR(q2.x(), 0.0, 1E-4); - ASSERT_NEAR(q2.y(), 0.0, 1E-4); - ASSERT_NEAR(q2.z(), 0.0, 1E-4); - } -} - -TEST_F(UKFLocalizationTest, accept_valid_time) { - aslam::Transformation tmp; - common::LocalizationResult result; - result.timestamp_ns = aslam::time::milliseconds(200); - result.T_G_M = aslam::Transformation(); - result.T_G_B = aslam::Transformation(); - localization_fuser_.initialize(result, tmp); - ASSERT_TRUE( - aslam::time::isValidTime(localization_fuser_.getLastMessageTimeNs())); -} - -TEST_F(UKFLocalizationTest, reject_early_time) { - aslam::Transformation tmp; - int64_t expected_time_ns = aslam::time::milliseconds(200); - common::LocalizationResult result; - result.timestamp_ns = expected_time_ns; - result.T_G_B = aslam::Transformation(); - result.T_G_M = aslam::Transformation(); - localization_fuser_.initialize(result, tmp); - - result.timestamp_ns = aslam::time::milliseconds(150); - vio::ViNodeState tmp_state; - localization_fuser_.localizationCallback(result, tmp_state); - ASSERT_EQ(localization_fuser_.getLastMessageTimeNs(), expected_time_ns); -} - -TEST_F(UKFLocalizationTest, measurement_handling) { - Eigen::MatrixXd initialCovar( - maplab::localization_fusion::STATE_SIZE, - maplab::localization_fusion::STATE_SIZE); - initialCovar.setIdentity(); - initialCovar *= 0.5; - getFilter().setEstimateErrorCovariance(initialCovar); - - EXPECT_TRUE(EIGEN_MATRIX_EQUAL( - getFilter().getEstimateErrorCovariance(), initialCovar)); - - Eigen::VectorXd measurement(maplab::localization_fusion::STATE_SIZE); - for (size_t i = 0; i < maplab::localization_fusion::STATE_SIZE; ++i) { - measurement[i] = i * 0.01 * maplab::localization_fusion::STATE_SIZE; - } - - Eigen::MatrixXd measurementCovariance( - maplab::localization_fusion::STATE_SIZE, - maplab::localization_fusion::STATE_SIZE); - measurementCovariance.setIdentity(); - for (size_t i = 0; i < maplab::localization_fusion::STATE_SIZE; ++i) { - measurementCovariance(i, i) = 1e-9; - } - - maplab::LocalizationFilterMeasurement pose_measurement_M_B; - maplab::LocalizationFilterPrediction odom_tmp; - pose_measurement_M_B.measurement_ = measurement; - pose_measurement_M_B.covariance_ = measurementCovariance; - pose_measurement_M_B.time_ = aslam::time::seconds(1000); - - // initializing the filter - localization_fuser_.processMeasurement(pose_measurement_M_B, odom_tmp); - - EXPECT_TRUE(EIGEN_MATRIX_EQUAL(getFilter().getState(), measurement)); - EXPECT_TRUE(EIGEN_MATRIX_EQUAL( - getFilter().getEstimateErrorCovariance(), measurementCovariance)); - - getFilter().setEstimateErrorCovariance(initialCovar); - - // Now fuse another measurement and check the output. - // We know what the filter's state should be when - // this is complete, so we'll check the difference and - // make sure it's suitably small. - Eigen::VectorXd measurement2 = measurement; - - measurement2 *= 2.0; - - for (size_t i = 0; i < maplab::localization_fusion::STATE_SIZE; ++i) { - measurementCovariance(i, i) = 1e-9; - } - - maplab::LocalizationFilterMeasurement pose_measurement_M_B2; - maplab::LocalizationFilterPrediction odom_tmp2; - pose_measurement_M_B2.measurement_ = measurement2; - pose_measurement_M_B2.covariance_ = measurementCovariance; - pose_measurement_M_B2.time_ = aslam::time::seconds(1002); - - localization_fuser_.setMahalanobisThreshold( - std::numeric_limits::max()); - // this prediction should be ignored given the large mahalanobis threshold - odom_tmp2.predicted_state_ = - Eigen::VectorXd::Zero(maplab::localization_fusion::STATE_SIZE); - odom_tmp2.predicted_state_ << 5.0687, 8.3323, 4.3098, 6.0756, 1.866, 5.9314; - odom_tmp2.covariance_ = Eigen::MatrixXd::Zero( - maplab::localization_fusion::STATE_SIZE, - maplab::localization_fusion::STATE_SIZE); - // clang-format off - odom_tmp2.covariance_ << 0.10, 0.00, 0.00, 0.00, 0.00, 0.00, - 0.00, 0.10, 0.00, 0.00, 0.00, 0.00, - 0.00, 0.00, 0.12, 0.00, 0.00, 0.00, - 0.00, 0.00, 0.00, 0.06, 0.00, 0.00, - 0.00, 0.00, 0.00, 0.00, 0.06, 0.00, - 0.00, 0.00, 0.00, 0.00, 0.00, 0.12; - // clang-format on - localization_fuser_.processMeasurement(pose_measurement_M_B2, odom_tmp2); - - Eigen::VectorXd measurement_err = - measurement2.eval() - getFilter().getState(); - for (size_t i = 0; i < maplab::localization_fusion::STATE_SIZE; ++i) { - EXPECT_LT(::fabs(measurement_err[i]), 0.001); - } -} - -MAPLAB_UNITTEST_ENTRYPOINT diff --git a/applications/maplab-node/CMakeLists.txt b/applications/maplab-node/CMakeLists.txt index 00f331f989..60611006b7 100644 --- a/applications/maplab-node/CMakeLists.txt +++ b/applications/maplab-node/CMakeLists.txt @@ -27,17 +27,12 @@ cs_add_library(${PROJECT_NAME}_lib src/datasource-rostopic.cc src/datasource.cc src/feature-tracking.cc - src/synchronizer.cc - src/localization-handler-flow.cc - src/localization-handler.cc + src/synchronizer.cc src/map-builder-flow.cc src/maplab-node.cc src/maplab-ros-node.cc src/ros-helpers.cc - src/map-update-builder.cc - src/visual-localizer-flow.cc - src/visual-localizer-helpers.cc - src/visual-localizer.cc) + src/map-update-builder.cc) ####### diff --git a/applications/maplab-node/include/maplab-node/data-publisher-flow.h b/applications/maplab-node/include/maplab-node/data-publisher-flow.h index a421881dfd..4e8498d964 100644 --- a/applications/maplab-node/include/maplab-node/data-publisher-flow.h +++ b/applications/maplab-node/include/maplab-node/data-publisher-flow.h @@ -1,12 +1,11 @@ #ifndef MAPLAB_NODE_DATA_PUBLISHER_FLOW_H_ #define MAPLAB_NODE_DATA_PUBLISHER_FLOW_H_ -#include -#include - #include #include +#include #include +#include #include #include #include @@ -26,14 +25,10 @@ namespace maplab { class DataPublisherFlow { public: const std::string kTopicPoseMission = "T_M_B"; - const std::string kTopicPoseGlobal = "T_G_I"; - const std::string kTopicBaseframe = "T_G_M"; const std::string kTopicVelocity = "velocity_I"; const std::string kTopicBiasAcc = "bias_acc"; const std::string kTopicBiasGyro = "bias_gyro"; const std::string kCameraExtrinsicTopic = "cam_T_C_B"; - const std::string kTopicLocalizationResult = "localization_T_G_B"; - const std::string kTopicLocalizationResultFused = "localization_fused_T_G_B"; explicit DataPublisherFlow(const vi_map::SensorManager& sensor_manager); @@ -44,38 +39,22 @@ class DataPublisherFlow { void registerPublishers(); void publishOdometryState( int64_t timestamp_ns, const vio::ViNodeState& vinode); - void publishVinsState( - int64_t timestamp_ns, const vio::ViNodeState& vinode, - const bool has_T_G_M, const aslam::Transformation& T_G_M); - void stateDebugCallback( - const vio::ViNodeState& vinode, const bool has_T_G_M, - const aslam::Transformation& T_G_M); - void localizationCallback( - const common::LocalizationResult& localization_result, - const bool is_fused_localization_result); + void publishVinsState(int64_t timestamp_ns, const vio::ViNodeState& vinode); + void stateDebugCallback(const vio::ViNodeState& vinode); const vi_map::SensorManager& sensor_manager_; std::unique_ptr plotter_; ros::NodeHandle node_handle_; ros::Publisher pub_pose_T_M_B_; - ros::Publisher pub_pose_T_G_I_; - ros::Publisher pub_baseframe_T_G_M_; ros::Publisher pub_velocity_I_; ros::Publisher pub_imu_acc_bias_; ros::Publisher pub_imu_gyro_bias_; ros::Publisher pub_extrinsics_T_C_Bs_; - ros::Publisher pub_localization_result_T_G_B_; - ros::Publisher pub_fused_localization_result_T_G_B_; common::TimeoutCounter map_publisher_timeout_; visualization::SphereVector T_M_B_spheres_; - visualization::SphereVector T_G_I_spheres_; - visualization::SphereVector T_G_B_raw_loc_spheres_; - visualization::SphereVector T_G_B_fused_loc_spheres_; - - aslam::Transformation latest_T_G_M_; }; } // namespace maplab diff --git a/applications/maplab-node/include/maplab-node/flow-topics.h b/applications/maplab-node/include/maplab-node/flow-topics.h index 172fd26ddc..83342989c6 100644 --- a/applications/maplab-node/include/maplab-node/flow-topics.h +++ b/applications/maplab-node/include/maplab-node/flow-topics.h @@ -1,6 +1,5 @@ #ifndef MAPLAB_NODE_FLOW_TOPICS_H_ #define MAPLAB_NODE_FLOW_TOPICS_H_ -#include #include #include #include @@ -9,11 +8,11 @@ #include #include #include - #include #include #include #include + #include "maplab-node/odometry-estimate.h" #include "maplab-node/vi-map-with-mutex.h" @@ -70,14 +69,6 @@ MESSAGE_FLOW_TOPIC( MESSAGE_FLOW_TOPIC( SYNCED_EXTERNAL_FEATURES, vi_map::ExternalFeaturesMeasurement::ConstPtr); -// Output of the localizer. -MESSAGE_FLOW_TOPIC(LOCALIZATION_RESULT, common::LocalizationResult::ConstPtr); - -// Output of the localization handler, fused localization results from all -// sources. -MESSAGE_FLOW_TOPIC( - FUSED_LOCALIZATION_RESULT, common::LocalizationResult::ConstPtr); - // Raw estimate of the VINS. MESSAGE_FLOW_TOPIC(MAP_UPDATES, vio::MapUpdate::ConstPtr); diff --git a/applications/maplab-node/include/maplab-node/localization-handler-flow.h b/applications/maplab-node/include/maplab-node/localization-handler-flow.h deleted file mode 100644 index 8d0ae205dd..0000000000 --- a/applications/maplab-node/include/maplab-node/localization-handler-flow.h +++ /dev/null @@ -1,33 +0,0 @@ -#ifndef MAPLAB_NODE_LOCALIZATION_HANDLER_FLOW_H_ -#define MAPLAB_NODE_LOCALIZATION_HANDLER_FLOW_H_ - -#include -#include - -#include -#include -#include -#include - -#include "maplab-node/localization-handler.h" - -namespace maplab { -class LocalizationHandlerFlow { - public: - explicit LocalizationHandlerFlow( - const vi_map::SensorManager& sensor_manager, - const vio_common::PoseLookupBuffer& T_M_B_buffer); - - void attachToMessageFlow(message_flow::MessageFlow* flow); - - private: - void processLocalizationResult( - const common::LocalizationResult::ConstPtr& localization_result); - - LocalizationHandler localization_handler_; - - std::function - publish_fused_localization_result_; -}; -} // namespace maplab -#endif // MAPLAB_NODE_LOCALIZATION_HANDLER_FLOW_H_ diff --git a/applications/maplab-node/include/maplab-node/localization-handler.h b/applications/maplab-node/include/maplab-node/localization-handler.h deleted file mode 100644 index 9c5735fd9e..0000000000 --- a/applications/maplab-node/include/maplab-node/localization-handler.h +++ /dev/null @@ -1,86 +0,0 @@ -#ifndef MAPLAB_NODE_LOCALIZATION_HANDLER_H_ -#define MAPLAB_NODE_LOCALIZATION_HANDLER_H_ - -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "maplab-node/flow-topics.h" - -namespace maplab { - -class LocalizationHandler { - public: - explicit LocalizationHandler( - const vi_map::SensorManager& sensor_manager, - const vio_common::PoseLookupBuffer& T_M_B_buffer); - - bool processLocalizationResult( - const common::LocalizationResult::ConstPtr& localization_result, - common::FusedLocalizationResult* fused_localization_result); - - private: - bool initializeBaseframe( - const common::LocalizationResult& localization_result); - bool processVisualLocalizationResultAsUpdate( - const aslam::NCamera& ncamera, - const vio::LocalizationResult& localization_result); - - // Returns the ratio of successfully reprojected matches. - double getVisualLocalizationReprojectionErrors( - const aslam::NCamera& ncamera, - const vio::LocalizationResult& localization_result, - const aslam::Transformation& T_M_B_filter, - std::vector* lc_reprojection_errors, - std::vector* filter_reprojection_errors); - - const vi_map::SensorManager& sensor_manager_; - - const vio_common::PoseLookupBuffer& T_M_B_buffer_; - - common::LocalizationState localization_state_; - - common::FixedSizeQueue T_G_M_loc_buffer_; - - static constexpr size_t kInitializationMaxNumRansacIterations = 3u; - static constexpr double kInitializationRansacPositionErrorThresholdMeters = - 5.0; - static constexpr double - kInitializationRansacOrientationErrorThresholdRadians = 20.0 * kDegToRad; - static constexpr double kInitializationRansacInlierRatioThreshold = 0.75; - - aslam::TransformationCovariance T_St_Stp1_fixed_covariance_; - - // store the ID of the previously submitted odometry measurement to calculate - // the uncertainty gain (i.e. covariance matrix) between the current - // measurement and the previous one - - int64_t previous_odometry_measurement_id_; - - // Current solution of the localization. - aslam::Transformation T_G_M_; - - LocalizationFilter localization_filter_; -}; - -} // namespace maplab - -#endif // MAPLAB_NODE_LOCALIZATION_HANDLER_H_ diff --git a/applications/maplab-node/include/maplab-node/map-update-builder.h b/applications/maplab-node/include/maplab-node/map-update-builder.h index 824bbb7a00..a62ecad039 100644 --- a/applications/maplab-node/include/maplab-node/map-update-builder.h +++ b/applications/maplab-node/include/maplab-node/map-update-builder.h @@ -9,7 +9,6 @@ #include #include -#include #include #include #include diff --git a/applications/maplab-node/include/maplab-node/maplab-node.h b/applications/maplab-node/include/maplab-node/maplab-node.h index 0f868028c9..5ca07f4b2a 100644 --- a/applications/maplab-node/include/maplab-node/maplab-node.h +++ b/applications/maplab-node/include/maplab-node/maplab-node.h @@ -13,10 +13,8 @@ #include "maplab-node/data-publisher-flow.h" #include "maplab-node/datasource-flow.h" #include "maplab-node/feature-tracking-flow.h" -#include "maplab-node/localization-handler-flow.h" #include "maplab-node/map-builder-flow.h" #include "maplab-node/synchronizer-flow.h" -#include "maplab-node/visual-localizer-flow.h" namespace maplab { @@ -29,20 +27,6 @@ class MaplabNode final { ~MaplabNode(); - // Localization/Loop closure. - // If we have an initial localization maps loaded at startup, the localizer - // will take ownership off them. - void enableVisualLocalization( - std::unique_ptr localization_map); - // If there is no initial localization map, the localizer can still be - // initialized, e.g. by online mapping, which sends localization map updates - // at runtime. - void enableVisualLocalization(); - void enableLidarLocalization(); - - // TODO(mfehr): refactor and integrate thesis of jboegli. - void enableOnlineMapping(); - // Once the node is started, the configuration cannot be changed anymore. void start(); void shutdown(); @@ -66,8 +50,6 @@ class MaplabNode final { void initializeLoopClosureSource(); void initializePointCloudMapSource(); - void initializeLocalizationHandler(); - message_flow::MessageFlow* const message_flow_; std::unique_ptr datasource_flow_; @@ -78,9 +60,6 @@ class MaplabNode final { std::unique_ptr synchronizer_flow_; std::unique_ptr tracker_flow_; - std::unique_ptr localizer_flow_; - std::unique_ptr localization_handler_flow; - // Set to true once the data-source has played back all its data. Will never // be true for infinite data-sources (live-data). std::atomic is_datasource_exhausted_; diff --git a/applications/maplab-node/include/maplab-node/synchronizer-flow.h b/applications/maplab-node/include/maplab-node/synchronizer-flow.h index b6e3e1403d..b20c35e5da 100644 --- a/applications/maplab-node/include/maplab-node/synchronizer-flow.h +++ b/applications/maplab-node/include/maplab-node/synchronizer-flow.h @@ -140,10 +140,6 @@ class SynchronizerFlow { synchronizer_.registerLoopClosureMeasurementCallback( message_flow_ ->registerPublisher()); - - synchronizer_.registerLocalizationResultMeasurementCallback( - message_flow_ - ->registerPublisher()); } void initializePointCloudMapData() { diff --git a/applications/maplab-node/include/maplab-node/synchronizer.h b/applications/maplab-node/include/maplab-node/synchronizer.h index 799e164a60..a66310e92b 100644 --- a/applications/maplab-node/include/maplab-node/synchronizer.h +++ b/applications/maplab-node/include/maplab-node/synchronizer.h @@ -111,10 +111,6 @@ class Synchronizer { const std::function< void(const vi_map::WheelOdometryMeasurement::ConstPtr&)>& callback); - void registerLocalizationResultMeasurementCallback( - const std::function& - callback); - void registerPointCloudMapSensorMeasurementCallback( const std::function< void(const vi_map::RosPointCloudMapSensorMeasurement::ConstPtr&)>& @@ -266,10 +262,6 @@ class Synchronizer { wheel_odometry_callbacks_; std::mutex wheel_odometry_callback_mutex_; - std::vector> - localization_result_callbacks_; - std::mutex localization_result_callback_mutex_; - std::vector< std::function> loop_closure_callbacks_; diff --git a/applications/maplab-node/include/maplab-node/visual-localizer-flow.h b/applications/maplab-node/include/maplab-node/visual-localizer-flow.h deleted file mode 100644 index 2ba94dbb54..0000000000 --- a/applications/maplab-node/include/maplab-node/visual-localizer-flow.h +++ /dev/null @@ -1,43 +0,0 @@ -#ifndef MAPLAB_NODE_VISUAL_LOCALIZER_FLOW_H_ -#define MAPLAB_NODE_VISUAL_LOCALIZER_FLOW_H_ - -#include - -#include -#include -#include -#include - -#include "maplab-node/visual-localizer.h" - -namespace maplab { -class VisualLocalizerFlow { - public: - VisualLocalizerFlow( - const vi_map::SensorManager& sensor_manager, - const vio_common::PoseLookupBuffer& T_M_B_buffer, - const bool visualize_localization); - - void setLocalizationMap( - std::unique_ptr localization_map); - - void attachToMessageFlow(message_flow::MessageFlow* flow); - - private: - void processTrackedNFrame( - const vio::SynchronizedNFrame::ConstPtr& nframe_imu); - - VisualLocalizer localizer_; - - const vio_common::PoseLookupBuffer& T_M_B_buffer_; - - std::function - publish_localization_result_; - - // All members below are used for throttling the localizations. - const int64_t min_localization_timestamp_diff_ns_; - int64_t previous_nframe_timestamp_ns_; - mutable std::mutex m_previous_nframe_timestamp_ns_; -}; -} // namespace maplab -#endif // MAPLAB_NODE_VISUAL_LOCALIZER_FLOW_H_ diff --git a/applications/maplab-node/include/maplab-node/visual-localizer-helpers.h b/applications/maplab-node/include/maplab-node/visual-localizer-helpers.h deleted file mode 100644 index cf0426c35a..0000000000 --- a/applications/maplab-node/include/maplab-node/visual-localizer-helpers.h +++ /dev/null @@ -1,27 +0,0 @@ -#ifndef MAPLAB_NODE_VISUAL_LOCALIZER_HELPERS_H_ -#define MAPLAB_NODE_VISUAL_LOCALIZER_HELPERS_H_ - -#include -#include -#include -#include -#include - -namespace maplab { - -void convertVertexKeyPointToStructureMatchListToLocalizationResult( - const summary_map::LocalizationSummaryMap& map, - const aslam::VisualNFrame& query_nframe, - const vi_map::VertexKeyPointToStructureMatchList& inlier_structure_matches, - vio::LocalizationResult* localization_result); - -void subselectStructureMatches( - const summary_map::LocalizationSummaryMap& map, - const summary_map::SummaryMapCachedLookups& map_cached_lookup, - const aslam::VisualNFrame& nframe, - size_t num_max_landmarks_to_keep_per_camera, - vi_map::VertexKeyPointToStructureMatchList* structure_matches); - -} // namespace maplab - -#endif // MAPLAB_NODE_VISUAL_LOCALIZER_HELPERS_H_ diff --git a/applications/maplab-node/include/maplab-node/visual-localizer.h b/applications/maplab-node/include/maplab-node/visual-localizer.h deleted file mode 100644 index 3b67b575b6..0000000000 --- a/applications/maplab-node/include/maplab-node/visual-localizer.h +++ /dev/null @@ -1,62 +0,0 @@ -#ifndef MAPLAB_NODE_VISUAL_LOCALIZER_H_ -#define MAPLAB_NODE_VISUAL_LOCALIZER_H_ - -#include -#include - -#include -#include -#include -#include -#include -#include - -namespace maplab { - -class VisualLocalizer { - public: - typedef common::LocalizationMode LocalizationMode; - - VisualLocalizer() = delete; - MAPLAB_POINTER_TYPEDEFS(VisualLocalizer); - EIGEN_MAKE_ALIGNED_OPERATOR_NEW - - VisualLocalizer( - const vi_map::SensorManager& sensor_manager, - std::unique_ptr - localization_summary_map, - const bool visualize_localization); - - VisualLocalizer( - const vi_map::SensorManager& sensor_manager, - const bool visualize_localization); - - void setLocalizationMap( - std::unique_ptr localization_map); - - LocalizationMode getCurrentLocalizationMode() const; - - bool localizeNFrame( - const aslam::VisualNFrame::ConstPtr& nframe, - vio::LocalizationResult* localization_result) const; - - private: - bool localizeNFrameGlobal( - const aslam::VisualNFrame::ConstPtr& nframe, - vio::LocalizationResult* localization_result) const; - bool localizeNFrameMapTracking( - const aslam::VisualNFrame::ConstPtr& nframe, - vio::LocalizationResult* localization_result) const; - - const vi_map::SensorManager& sensor_manager_; - - LocalizationMode current_localization_mode_; - loop_detector_node::LoopDetectorNode::UniquePtr global_loop_detector_; - - std::unique_ptr localization_map_; - std::unique_ptr map_cached_lookup_; -}; - -} // namespace maplab - -#endif // MAPLAB_NODE_VISUAL_LOCALIZER_H_ diff --git a/applications/maplab-node/package.xml b/applications/maplab-node/package.xml index a6cfa97204..2f83ea77de 100644 --- a/applications/maplab-node/package.xml +++ b/applications/maplab-node/package.xml @@ -23,7 +23,6 @@ feature_tracking gflags_catkin glog_catkin - localization_fusion localization_summary_map loop_closure_handler map_sparsification_plugin diff --git a/applications/maplab-node/share/maplab_rosparams.yaml b/applications/maplab-node/share/maplab_rosparams.yaml deleted file mode 100644 index b814af8310..0000000000 --- a/applications/maplab-node/share/maplab_rosparams.yaml +++ /dev/null @@ -1,68 +0,0 @@ -# SENSORS -sensor_calibration_file: "" -# IMU -imu_to_camera_time_offset_ns: 0 -# VIO -vio_camera_topic_suffix: /image_raw -vio_nframe_sync_tolerance_ns: 500000 -vio_nframe_sync_max_output_frequency_hz: 10 - -# SENSOR SELECTION -# only needed if there are multiple ncameras/lidars/imus/odometries -# in the calibration file. -selected_ncamera_sensor_id: "" -selected_imu_sensor_id: "" -selected_lidar_sensor_id: "" -selected_odometry_6dof_sensor_id: "" - -# DATA SOURCE [rosbag, rostopic] -datasource_type: "rostopic" -datasource_rosbag: "" - -# DATA PREPROCESSING -image_apply_clahe_histogram_equalization: false - -# LOCALIZATION BASED ON VISION -enable_visual_localization: false -visual_localization_map_folder: "" - -# LOCALIZATION BASED ON LIDAR -enable_lidar_localization: false -lidar_localization_map_folder: "" - -# ONLINE MAPPING -enable_online_mapping: false - -# MAP BUILDING -map_output_folder: "" -map_save_on_shutdown: true -map_overwrite_enabled: false -map_compute_localization_map: false -map_run_keyframing_when_saving: false -map_remove_bad_landmarks: false -map_initialize_and_triangulate_landmarks_when_saving: true -map_save_every_n_sec: 0 -map_split_map_into_submaps_when_saving_periodically: true - -# ATTACHING RESOURCES TO MAP -map_builder_save_image_as_resources: false -map_builder_save_point_clouds_as_resources: false -map_builder_save_point_clouds_as_range_image_camera_id: "" -map_builder_save_point_clouds_as_range_image_including_intensity_image: false -map_builder_save_point_cloud_maps_as_resources: false - -# TF -tf_map_frame: map -tf_mission_frame: mission -tf_imu_frame: imu -tf_imu_refined_frame: imu_refined - -# DEBUGGING AND LOGGING -alsologtostderr: true -colorlogtostderr: true -v: 1 -publish_debug_markers: false -vis_default_namespace: maplab_rviz -export_estimated_poses_to_csv: "" -detection_visualize_keypoints: false -feature_tracker_visualize_keypoint_matches: true diff --git a/applications/maplab-node/src/data-publisher-flow.cc b/applications/maplab-node/src/data-publisher-flow.cc index 1be1113bc7..50c0007ea7 100644 --- a/applications/maplab-node/src/data-publisher-flow.cc +++ b/applications/maplab-node/src/data-publisher-flow.cc @@ -1,11 +1,11 @@ -#include "maplab-node/data-publisher-flow.h" #include #include #include #include #include -#include #include + +#include "maplab-node/data-publisher-flow.h" #include "maplab-node/ros-helpers.h" DEFINE_double( @@ -18,21 +18,18 @@ DEFINE_bool( "means a lower frequency."); DEFINE_bool( - publish_debug_markers, true, - "Publish debug sphere markers for T_M_B, T_G_I and localization frames."); + publish_debug_markers, true, "Publish debug sphere markers for T_M_B."); DEFINE_string( export_estimated_poses_to_csv, "", - "If not empty, the map builder will export the estimated poses to a CSV " - "file."); + "If not empty, the map builder will export the estimated poses to the " + "specified CSV file."); DEFINE_bool( visualize_map, true, "Set to false to disable map visualization. Note: map building needs to be " "active for the visualization."); -DECLARE_bool(run_map_builder); - #include "maplab-node/vi-map-with-mutex.h" namespace maplab { @@ -59,10 +56,6 @@ DataPublisherFlow::DataPublisherFlow( void DataPublisherFlow::registerPublishers() { pub_pose_T_M_B_ = node_handle_.advertise(kTopicPoseMission, 1); - pub_pose_T_G_I_ = - node_handle_.advertise(kTopicPoseGlobal, 1); - pub_baseframe_T_G_M_ = - node_handle_.advertise(kTopicBaseframe, 1); pub_velocity_I_ = node_handle_.advertise(kTopicVelocity, 1); pub_imu_acc_bias_ = @@ -71,12 +64,6 @@ void DataPublisherFlow::registerPublishers() { node_handle_.advertise(kTopicBiasGyro, 1); pub_extrinsics_T_C_Bs_ = node_handle_.advertise( kCameraExtrinsicTopic, 1); - pub_localization_result_T_G_B_ = - node_handle_.advertise( - kTopicLocalizationResult, 1); - pub_fused_localization_result_T_G_B_ = - node_handle_.advertise( - kTopicLocalizationResultFused, 1); } void DataPublisherFlow::attachToMessageFlow(message_flow::MessageFlow* flow) { @@ -84,7 +71,7 @@ void DataPublisherFlow::attachToMessageFlow(message_flow::MessageFlow* flow) { registerPublishers(); static constexpr char kSubscriberNodeName[] = "DataPublisher"; - if (FLAGS_run_map_builder && FLAGS_visualize_map) { + if (FLAGS_visualize_map) { flow->registerSubscriber( kSubscriberNodeName, message_flow::DeliveryOptions(), [this](const VIMapWithMutex::ConstPtr& map_with_mutex) { @@ -96,36 +83,11 @@ void DataPublisherFlow::attachToMessageFlow(message_flow::MessageFlow* flow) { }); } - // Publish localization results. - flow->registerSubscriber( - kSubscriberNodeName, message_flow::DeliveryOptions(), - [this](const common::LocalizationResult::ConstPtr& localization) { - CHECK(localization); - localizationCallback( - *localization, false /* is NOT a fused localization result */); - }); - - // Publish fused localization results. - flow->registerSubscriber( - kSubscriberNodeName, message_flow::DeliveryOptions(), - [this](const common::LocalizationResult::ConstPtr& fused_localization) { - CHECK(fused_localization); - localizationCallback( - *fused_localization, true /* is a fused localization result */); - }); - flow->registerSubscriber( kSubscriberNodeName, message_flow::DeliveryOptions(), [this](const vio::MapUpdate::ConstPtr& vio_update) { CHECK(vio_update != nullptr); - bool has_T_G_M = - (vio_update->localization_state == - common::LocalizationState::kLocalized || - vio_update->localization_state == - common::LocalizationState::kMapTracking); - publishVinsState( - vio_update->timestamp_ns, vio_update->vinode, has_T_G_M, - vio_update->T_G_M); + publishVinsState(vio_update->timestamp_ns, vio_update->vinode); }); flow->registerSubscriber( @@ -154,8 +116,8 @@ void DataPublisherFlow::attachToMessageFlow(message_flow::MessageFlow* flow) { FLAGS_export_estimated_poses_to_csv); constexpr char kDelimiter[] = " "; file_logger->writeDataWithDelimiterAndNewLine( - kDelimiter, "# Timestamp [s]", "p_G_Ix", "p_G_Iy", "p_G_Iz", "q_G_Ix", - "q_G_Iy", "q_G_Iz", "q_G_Iw"); + kDelimiter, "# Timestamp [s]", "p_M_Ix", "p_M_Iy", "p_M_Iz", "q_M_Ix", + "q_M_Iy", "q_M_Iz", "q_M_Iw"); CHECK(file_logger != nullptr); flow->registerSubscriber( kSubscriberNodeName, message_flow::DeliveryOptions(), @@ -186,6 +148,7 @@ void DataPublisherFlow::visualizeMap(const vi_map::VIMap& vi_map) const { void DataPublisherFlow::publishOdometryState( int64_t timestamp_ns, const vio::ViNodeState& vinode) { ros::Time timestamp_ros = createRosTimestamp(timestamp_ns); + // Publish pose in mission frame. const aslam::Transformation& T_M_B = vinode.get_T_M_I(); geometry_msgs::PoseStamped T_M_I_message; @@ -198,8 +161,7 @@ void DataPublisherFlow::publishOdometryState( const vi_map::SensorType base_sensor_type = sensor_manager_.getSensorType(base_sensor_id); const std::string base_sensor_tf_frame_id = - visualization::convertSensorTypeToTfFrameId(base_sensor_type) + - "_0_BASE"; + visualization::convertSensorTypeToTfFrameId(base_sensor_type); visualization::publishTF( T_M_B, FLAGS_tf_mission_frame, base_sensor_tf_frame_id, timestamp_ros); @@ -209,53 +171,16 @@ void DataPublisherFlow::publishOdometryState( LOG(ERROR) << "There is more than one base sensor, cannot publish base to " "tf tree!"; } + + if (FLAGS_publish_debug_markers) { + stateDebugCallback(vinode); + } } void DataPublisherFlow::publishVinsState( - int64_t timestamp_ns, const vio::ViNodeState& vinode, const bool has_T_G_M, - const aslam::Transformation& T_G_M) { + int64_t timestamp_ns, const vio::ViNodeState& vinode) { ros::Time timestamp_ros = createRosTimestamp(timestamp_ns); - // Publish pose in mission frame. - const aslam::Transformation& T_M_B = vinode.get_T_M_I(); - geometry_msgs::PoseStamped T_M_I_message; - tf::poseStampedKindrToMsg( - T_M_B, timestamp_ros, FLAGS_tf_mission_frame, &T_M_I_message); - pub_pose_T_M_B_.publish(T_M_I_message); - - aslam::SensorId base_sensor_id; - if (sensor_manager_.getBaseSensorIdIfUnique(&base_sensor_id)) { - const vi_map::SensorType base_sensor_type = - sensor_manager_.getSensorType(base_sensor_id); - const std::string localized_base_sensor_tf_frame_id = - visualization::convertSensorTypeToTfFrameId(base_sensor_type) + - "_0_BASE_LOCALIZED"; - - visualization::publishTF( - T_M_B, FLAGS_tf_mission_frame, localized_base_sensor_tf_frame_id, - timestamp_ros); - - } else { - LOG(ERROR) << "There is more than one base sensor, cannot publish base to " - "tf tree!"; - } - - // Publish pose in global frame, but only as marker, not into the tf tree, - // since it is composing this transformation on its own. - aslam::Transformation T_G_I = T_G_M * T_M_B; - geometry_msgs::PoseStamped T_G_I_message; - tf::poseStampedKindrToMsg( - T_G_I, timestamp_ros, FLAGS_tf_map_frame, &T_G_I_message); - pub_pose_T_G_I_.publish(T_G_I_message); - - // Publish baseframe transformation. - geometry_msgs::PoseStamped T_G_M_message; - tf::poseStampedKindrToMsg( - T_G_M, timestamp_ros, FLAGS_tf_map_frame, &T_G_M_message); - pub_baseframe_T_G_M_.publish(T_G_M_message); - visualization::publishTF( - T_G_M, FLAGS_tf_map_frame, FLAGS_tf_mission_frame, timestamp_ros); - // Publish velocity. const Eigen::Vector3d& v_M_I = vinode.get_v_M_I(); geometry_msgs::Vector3Stamped velocity_msg; @@ -278,15 +203,9 @@ void DataPublisherFlow::publishVinsState( bias_msg.vector.y = imu_bias_acc_gyro[4]; bias_msg.vector.z = imu_bias_acc_gyro[5]; pub_imu_gyro_bias_.publish(bias_msg); - - if (FLAGS_publish_debug_markers) { - stateDebugCallback(vinode, has_T_G_M, T_G_M); - } } -void DataPublisherFlow::stateDebugCallback( - const vio::ViNodeState& vinode, const bool has_T_G_M, - const aslam::Transformation& T_G_M) { +void DataPublisherFlow::stateDebugCallback(const vio::ViNodeState& vinode) { constexpr size_t kMarkerId = 0u; visualization::Sphere sphere; const aslam::Transformation& T_M_B = vinode.get_T_M_I(); @@ -300,76 +219,15 @@ void DataPublisherFlow::stateDebugCallback( // Publish estimated velocity const aslam::Position3D& M_p_M_B = T_M_B.getPosition(); - const Eigen::Vector3d& v_M_I = vinode.get_v_M_I(); + const Eigen::Vector3d& v_M_B = vinode.get_v_M_I(); visualization::Arrow arrow; arrow.from = M_p_M_B; - arrow.to = M_p_M_B + v_M_I; + arrow.to = M_p_M_B + v_M_B; arrow.scale = 0.3; arrow.color = visualization::kCommonRed; arrow.alpha = 0.8; visualization::publishArrow( - arrow, kMarkerId, FLAGS_tf_map_frame, "debug", "debug_v_M_I_"); - - // Publish global frame if it is available. - if (has_T_G_M) { - aslam::Transformation T_G_I = T_G_M * T_M_B; - visualization::Sphere sphere; - sphere.position = T_G_I.getPosition(); - sphere.radius = 0.2; - sphere.color = visualization::kCommonWhite; - sphere.alpha = 0.8; - T_G_I_spheres_.push_back(sphere); - - visualization::publishSpheres( - T_G_I_spheres_, kMarkerId, FLAGS_tf_map_frame, "debug", "debug_T_G_B"); - } -} - -void DataPublisherFlow::localizationCallback( - const common::LocalizationResult& localization_result, - const bool is_fused_localization_result) { - const Eigen::Vector3d& p_G_B = localization_result.T_G_B.getPosition(); - - visualization::Sphere sphere; - sphere.position = p_G_B; - sphere.radius = 0.2; - if (is_fused_localization_result) { - sphere.color = visualization::kCommonRed; - } else { - switch (localization_result.localization_type) { - case common::LocalizationType::kVisualFeatureBased: - sphere.color = visualization::kCommonPink; - break; - default: - LOG(FATAL) << "Unknown localization result type: " - << static_cast(localization_result.localization_type); - break; - } - } - sphere.alpha = 0.8; - - geometry_msgs::PoseWithCovarianceStamped pose_msg; - pose_msg.header.stamp = createRosTimestamp(localization_result.timestamp_ns); - pose_msg.header.frame_id = FLAGS_tf_map_frame; - tf::poseKindrToMsg(localization_result.T_G_B, &pose_msg.pose.pose); - eigenMatrixToOdometryCovariance( - localization_result.T_G_B_covariance, pose_msg.pose.covariance.data()); - - constexpr size_t kMarkerId = 0u; - if (is_fused_localization_result) { - T_G_B_fused_loc_spheres_.push_back(sphere); - visualization::publishSpheres( - T_G_B_fused_loc_spheres_, kMarkerId, FLAGS_tf_map_frame, "debug", - "debug_T_G_B_fused_localizations"); - pub_fused_localization_result_T_G_B_.publish(pose_msg); - - } else { - T_G_B_raw_loc_spheres_.push_back(sphere); - visualization::publishSpheres( - T_G_B_raw_loc_spheres_, kMarkerId, FLAGS_tf_map_frame, "debug", - "debug_T_G_B_raw_localizations"); - pub_localization_result_T_G_B_.publish(pose_msg); - } + arrow, kMarkerId, FLAGS_tf_map_frame, "debug", "debug_v_M_B_"); } } // namespace maplab diff --git a/applications/maplab-node/src/localization-handler-flow.cc b/applications/maplab-node/src/localization-handler-flow.cc deleted file mode 100644 index fd80caa3d0..0000000000 --- a/applications/maplab-node/src/localization-handler-flow.cc +++ /dev/null @@ -1,52 +0,0 @@ -#include "maplab-node/localization-handler-flow.h" - -#include -#include -#include - -#include "maplab-node/flow-topics.h" - -namespace maplab { - -LocalizationHandlerFlow::LocalizationHandlerFlow( - const vi_map::SensorManager& sensor_manager, - const vio_common::PoseLookupBuffer& T_M_B_buffer) - : localization_handler_(sensor_manager, T_M_B_buffer) {} - -void LocalizationHandlerFlow::attachToMessageFlow( - message_flow::MessageFlow* flow) { - CHECK_NOTNULL(flow); - static constexpr char kSubscriberNodeName[] = "LocalizationHandler"; - - publish_fused_localization_result_ = - flow->registerPublisher(); - - flow->registerSubscriber( - kSubscriberNodeName, message_flow::DeliveryOptions(), - std::bind( - &LocalizationHandlerFlow::processLocalizationResult, this, - std::placeholders::_1)); -} - -void LocalizationHandlerFlow::processLocalizationResult( - const common::LocalizationResult::ConstPtr& localization_result) { - CHECK(localization_result); - - common::LocalizationResult::Ptr fused_localization_result = - std::make_shared(); - - common::FusedLocalizationResult::Ptr fused_localization_result_ptr = - std::static_pointer_cast( - fused_localization_result); - - const bool success = localization_handler_.processLocalizationResult( - localization_result, fused_localization_result_ptr.get()); - - if (success) { - common::LocalizationResult::ConstPtr const_fused_localization_result = - std::const_pointer_cast( - fused_localization_result); - publish_fused_localization_result_(const_fused_localization_result); - } -} -} // namespace maplab diff --git a/applications/maplab-node/src/localization-handler.cc b/applications/maplab-node/src/localization-handler.cc deleted file mode 100644 index b65ccb1a66..0000000000 --- a/applications/maplab-node/src/localization-handler.cc +++ /dev/null @@ -1,424 +0,0 @@ -#include "maplab-node/localization-handler.h" - -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "maplab-node/flow-topics.h" - -DEFINE_bool( - use_6dof_localization, true, - "Localize using 6dof constraints instead of structure constraints."); -DEFINE_uint64( - min_num_baseframe_estimates_before_init, 2u, - "Number of T_G_M measurements to collect before initializing T_G_M."); -DEFINE_double( - baseframe_init_position_covariance_msq, 20.0, - "Position covariance of the baseframe initialization [m^2]."); -DEFINE_double( - baseframe_init_rotation_covariance_radsq, 90.0 * kDegToRad, - "Rotation covariance of the baseframe initialization [rad^2]."); - -DEFINE_double( - max_mean_localization_reprojection_error_px, 100.0, - "If mean reprojection error of the matches exceeds this value, " - "reinitialize the baseframe."); - -DEFINE_double( - localization_max_gravity_misalignment_deg, 5.0, - "Localization results are rejected if the angle between the gravity" - "direction of the odometry and the localization exceeds this value."); - -DEFINE_int32( - min_number_of_structure_constraints, 5, - "After we reject structure constraints based on their reprojection " - "error, this is the minimum number of constraints required to accept a " - "localization."); - -namespace maplab { - -namespace { -bool getReprojectionErrorForGlobalLandmark( - const Eigen::Vector3d& p_G, const pose::Transformation& T_G_C, - const aslam::Camera& camera, const Eigen::Vector2d& measurement, - double* reprojection_error) { - CHECK_NOTNULL(reprojection_error); - - const Eigen::Vector3d p_C = T_G_C.inverse() * p_G; - Eigen::Vector2d reprojected_keypoint; - const aslam::ProjectionResult result = - camera.project3(p_C, &reprojected_keypoint); - - const aslam::ProjectionResult::Status projection_result = - result.getDetailedStatus(); - CHECK_NE(projection_result, aslam::ProjectionResult::UNINITIALIZED); - if (projection_result == aslam::ProjectionResult::POINT_BEHIND_CAMERA || - projection_result == aslam::ProjectionResult::PROJECTION_INVALID) { - return false; - } - - *reprojection_error = (reprojected_keypoint - measurement).norm(); - return true; -} -} // namespace - -LocalizationHandler::LocalizationHandler( - const vi_map::SensorManager& sensor_manager, - const vio_common::PoseLookupBuffer& T_M_B_buffer) - : sensor_manager_(sensor_manager), - T_M_B_buffer_(T_M_B_buffer), - // 6dof constraint based localization does not need initialization. - localization_state_( - FLAGS_use_6dof_localization - ? common::LocalizationState::kLocalized - : common::LocalizationState::kUninitialized), - T_G_M_loc_buffer_(FLAGS_min_num_baseframe_estimates_before_init), - previous_odometry_measurement_id_(-1) { - if (FLAGS_use_6dof_localization) { - LOG(INFO) << "[MaplabNode-LocalizationHandler] Localization mode: 6DoF " - "constraints."; - aslam::SensorIdSet odometry_sensors; - sensor_manager_.getAllSensorIdsOfType( - vi_map::kOdometry6DoF, &odometry_sensors); - CHECK_GT(odometry_sensors.size(), 0u) - << "[MaplabNode-LocalizationHandler] There needs to be at least one " - << "odometry source to perform localization fusion."; - vi_map::Odometry6DoF odometry_sensor = - sensor_manager_.getSensor( - *odometry_sensors.begin()); - odometry_sensor.get_T_St_Stp1_fixed_covariance( - &T_St_Stp1_fixed_covariance_); - } else { - // TODO(mfehr): TODO(LBern): change once we have structure constraint mode. - LOG(FATAL) << "[MaplabNode-LocalizationHandler] Currently only 6DoF " - << "localization mode is implemented!"; - } -} - -bool LocalizationHandler::processLocalizationResult( - const common::LocalizationResult::ConstPtr& localization_result, - common::FusedLocalizationResult* fused_localization_result) { - CHECK(localization_result); - CHECK_NOTNULL(fused_localization_result); - - // Checking if there is a sensor associated with this localization. It - // might be ok if there is not, depending on the localization type. - const bool localization_has_sensor = localization_result->sensor_id.isValid(); - - bool sensor_manager_has_sensor = false; - vi_map::SensorType sensor_type = vi_map::SensorType::kUnknown; - if (localization_has_sensor) { - sensor_manager_has_sensor = - sensor_manager_.hasSensor(localization_result->sensor_id); - if (sensor_manager_has_sensor) { - sensor_type = - sensor_manager_.getSensorType(localization_result->sensor_id); - } - } - - bool success = false; - - switch (localization_state_) { - case common::LocalizationState::kUninitialized: - // Fall-through intended. - case common::LocalizationState::kNotLocalized: { - success = initializeBaseframe(*localization_result); - if (success) { - LOG(INFO) << "[MaplabNode-LocalizationHandler] (Re-)initialized the " - "localization baseframe."; - localization_state_ = common::LocalizationState::kLocalized; - } - break; - } - case common::LocalizationState::kLocalized: { - switch (localization_result->localization_type) { - case common::LocalizationType::kVisualFeatureBased: { - CHECK(localization_has_sensor) - << "[MaplabNode-LocalizationHandler] Received " - << "visual-feature-based localization result, but there was no " - << "sensor associated to it!"; - CHECK(sensor_manager_has_sensor) - << "[MaplabNode-LocalizationHandler] Received " - << "visual-feature-based localization result, but the associated " - << "sensor (id: " << localization_result->sensor_id - << " type: " << sensor_type << ") is " - << "not in the sensor manager!"; - CHECK_EQ(sensor_type, vi_map::SensorType::kNCamera) - << "[MaplabNode-LocalizationHandler] Received " - << "visual-feature-based localization result, but the associated " - << "sensor (id: " << localization_result->sensor_id - << " type: " << sensor_type << ") is not a camera!"; - - const vio::LocalizationResult* visual_localization_result = - dynamic_cast( - localization_result.get()); - CHECK_NOTNULL(visual_localization_result); - - const aslam::NCamera& ncamera = - sensor_manager_.getSensor( - localization_result->sensor_id); - success = processVisualLocalizationResultAsUpdate( - ncamera, *visual_localization_result); - } break; - default: - LOG(FATAL) << "Unknown localization type: " - << static_cast( - localization_result->localization_type); - break; - } - break; - } - default: - LOG(FATAL) << "Unknown localization state: " - << static_cast(localization_state_); - break; - } - if (success) { - localization_filter_.getFusedLocalization(fused_localization_result); - } - return success; -} - -bool LocalizationHandler::initializeBaseframe( - const common::LocalizationResult& localization_result) { - // Collect a certain number of localizations before performing the actual - // initialization. - vio::ViNodeState odometry_estimate, sequence_number_state; - if (T_M_B_buffer_.interpolateViNodeStateAt( - localization_result.timestamp_ns, &odometry_estimate) > - vio_common::PoseLookupBuffer::ResultStatus:: - kSuccessImuForwardPropagation) { - LOG(WARNING) << "[MaplabNode-LocalizationHandler] Could not get T_M_B for " - "baseframe initialization."; - return false; - } - const aslam::Transformation T_G_M_loc_estimate = - localization_result.T_G_B * odometry_estimate.get_T_M_I().inverse(); - - T_G_M_loc_buffer_.insert(T_G_M_loc_estimate); - if (T_G_M_loc_buffer_.size() < - FLAGS_min_num_baseframe_estimates_before_init) { - return false; - } - - // Perform initialization with LSQ estimate of the baseframe transformation - // in the buffer. - const int kNumInliersThreshold = std::ceil( - FLAGS_min_num_baseframe_estimates_before_init * - kInitializationRansacInlierRatioThreshold); - - int num_inliers = 0; - std::random_device device; - const int ransac_seed = device(); - common::transformationRansac( - T_G_M_loc_buffer_.buffer(), kInitializationMaxNumRansacIterations, - kInitializationRansacOrientationErrorThresholdRadians, - kInitializationRansacPositionErrorThresholdMeters, ransac_seed, &T_G_M_, - &num_inliers); - if (num_inliers < kNumInliersThreshold) { - VLOG(1) << "Too few localization transformation inliers (" << num_inliers - << "/" << T_G_M_loc_buffer_.size() << ")."; - return false; - } - - LOG(INFO) << "[MaplabNode-LocalizationHandler] Initializing localization " - "filter from ransac."; - // Initialize the localization filter - common::LocalizationResult initialization_result(localization_result); - initialization_result.T_G_M = T_G_M_; - localization_filter_.initialize( - initialization_result, odometry_estimate.get_T_M_I()); - CHECK(T_M_B_buffer_.getValueAtOrAfterTime( - localization_result.timestamp_ns, &sequence_number_state)); - previous_odometry_measurement_id_ = sequence_number_state.getSequenceNumber(); - T_G_M_loc_buffer_.clear(); - return true; -} - -double getLocalizationResultGravityDisparityAngleDeg( - const vio::LocalizationResult& localization_result, - const pose::Transformation& T_G_I_filter) { - const pose::Transformation& T_G_B = localization_result.T_G_B; - - const Eigen::Vector3d gravity_direction_filter = - T_G_I_filter.getRotation().inverse().rotate(Eigen::Vector3d::UnitZ()); - const Eigen::Vector3d gravity_direction_localization_pnp = - T_G_B.getRotation().inverse().rotate(Eigen::Vector3d::UnitZ()); - - CHECK_NEAR(gravity_direction_filter.squaredNorm(), 1.0, 1e-8); - CHECK_NEAR(gravity_direction_localization_pnp.squaredNorm(), 1.0, 1e-8); - - const double error_cosine = - gravity_direction_filter.dot(gravity_direction_localization_pnp); - - double error_angle_degrees = 180.; - if (error_cosine <= -1) { - error_angle_degrees = 180.; - } else if (error_cosine >= 1) { - error_angle_degrees = 0.; - } else { - // Cosine is in the valid range. - error_angle_degrees = std::acos(error_cosine) * kRadToDeg; - } - - return error_angle_degrees; -} - -bool LocalizationHandler::processVisualLocalizationResultAsUpdate( - const aslam::NCamera& /*ncamera*/, - const vio::LocalizationResult& localization_result) { - vio::ViNodeState odometry_estimate; - const vio_common::PoseLookupBuffer::ResultStatus lookup_result = - T_M_B_buffer_.interpolateViNodeStateAt( - localization_result.timestamp_ns, &odometry_estimate); - - CHECK( - lookup_result != - vio_common::PoseLookupBuffer::ResultStatus::kFailedNotYetAvailable); - CHECK( - lookup_result != - vio_common::PoseLookupBuffer::ResultStatus::kFailedWillNeverSucceed); - - const double gravity_error_angle_deg = - getLocalizationResultGravityDisparityAngleDeg( - localization_result, odometry_estimate.get_T_M_I()); - if (gravity_error_angle_deg > - FLAGS_localization_max_gravity_misalignment_deg) { - LOG(WARNING) - << "[MaplabNode-LocalizationHandler] The gravity direction of the " - << "localization is not " - << "consistent with the odometry estimate. The disparity angle " - << "is " << gravity_error_angle_deg - << "deg (threshold: " << FLAGS_localization_max_gravity_misalignment_deg - << "). Rejected the localization result."; - return false; - } - - bool measurement_accepted = false; - if (FLAGS_use_6dof_localization) { - // To receive a conservative estimate of the odometry covariance, the first - // available sequence number >= the current timestamp is used - vio::ViNodeState sequence_number_state; - CHECK(T_M_B_buffer_.getValueAtOrAfterTime( - localization_result.timestamp_ns, &sequence_number_state)); - int64_t sequence_number = sequence_number_state.getSequenceNumber(); - - if (localization_filter_.isInitialized()) { - // Calculate the odometry covariance as nSteps * covariance_per_step - double nsteps = static_cast( - sequence_number - previous_odometry_measurement_id_); - if (nsteps < 0) { - // Per the current covariance calculation method, this would lead to a - // negative odometry covariance. Therefore ignoring the measurement. - LOG(WARNING) << "[MaplabNode-LocalizationHandler]: A localization " - << "arrived out of order. " - << "It will be ignored by the filter."; - return false /*measurement_accepted = false*/; - } - aslam::TransformationCovariance odometry_covariance; - odometry_covariance = nsteps * T_St_Stp1_fixed_covariance_; - odometry_estimate.setPoseCovariance(odometry_covariance); - measurement_accepted = localization_filter_.localizationCallback( - localization_result, odometry_estimate); - if (measurement_accepted) { - previous_odometry_measurement_id_ = sequence_number; - } - } else { - LOG(INFO) << "[MaplabNode-LocalizationHandler] Using the first " - "localization result to initialize the localization filter."; - localization_filter_.initialize( - localization_result, odometry_estimate.get_T_M_I()); - previous_odometry_measurement_id_ = sequence_number; - measurement_accepted = true; - } - } else { - // TODO(mfehr): TODO(LBern): do proper fusion using structure constraints. - } - - LOG_IF(WARNING, !measurement_accepted) - << "[MaplabNode-LocalizationHandler] Localization update rejected at " - << "time = " << localization_result.timestamp_ns << "ns."; - return measurement_accepted; -} - -double LocalizationHandler::getVisualLocalizationReprojectionErrors( - const aslam::NCamera& ncamera, - const vio::LocalizationResult& localization_result, - const aslam::Transformation& T_G_I_filter, - std::vector* lc_reprojection_errors, - std::vector* filter_reprojection_errors) { - CHECK_NOTNULL(lc_reprojection_errors)->clear(); - CHECK_NOTNULL(filter_reprojection_errors)->clear(); - - CHECK_EQ( - localization_result.G_landmarks_per_camera.size(), - localization_result.keypoint_measurements_per_camera.size()); - - size_t num_matches_processed = 0; - - const size_t num_cameras = localization_result.G_landmarks_per_camera.size(); - CHECK_EQ(num_cameras, ncamera.numCameras()); - for (size_t cam_idx = 0u; cam_idx < num_cameras; ++cam_idx) { - CHECK_EQ( - localization_result.G_landmarks_per_camera[cam_idx].cols(), - localization_result.keypoint_measurements_per_camera[cam_idx].cols()); - - const size_t num_matches = - localization_result.G_landmarks_per_camera[cam_idx].cols(); - - if (num_matches == 0u) { - continue; - } - - const pose::Transformation& T_C_B = ncamera.get_T_C_B(cam_idx); - const pose::Transformation T_G_C_filter = - (T_C_B * T_G_I_filter.inverse()).inverse(); - const pose::Transformation T_G_C_loc = - (T_C_B * localization_result.T_G_B.inverse()).inverse(); - - for (size_t i = 0u; i < num_matches; ++i) { - const Eigen::Vector2d& keypoint = - localization_result.keypoint_measurements_per_camera[cam_idx].col(i); - const Eigen::Vector3d& p_G = - localization_result.G_landmarks_per_camera[cam_idx].col(i); - - double reproj_error_sq_filter; - double reproj_error_sq_lc; - const aslam::Camera& camera = ncamera.getCamera(cam_idx); - bool projection_successful = getReprojectionErrorForGlobalLandmark( - p_G, T_G_C_filter, camera, keypoint, &reproj_error_sq_filter); - if (projection_successful) { - projection_successful &= getReprojectionErrorForGlobalLandmark( - p_G, T_G_C_loc, camera, keypoint, &reproj_error_sq_lc); - } - - ++num_matches_processed; - - if (projection_successful) { - lc_reprojection_errors->push_back(reproj_error_sq_filter); - filter_reprojection_errors->push_back(reproj_error_sq_lc); - } - } - } - - CHECK_EQ(lc_reprojection_errors->size(), filter_reprojection_errors->size()); - CHECK_GT(num_matches_processed, 0u); - return static_cast(lc_reprojection_errors->size()) / - num_matches_processed; -} - -} // namespace maplab diff --git a/applications/maplab-node/src/maplab-node.cc b/applications/maplab-node/src/maplab-node.cc index 662c390f19..2f1cd968cd 100644 --- a/applications/maplab-node/src/maplab-node.cc +++ b/applications/maplab-node/src/maplab-node.cc @@ -1,19 +1,13 @@ -#include "maplab-node/maplab-node.h" - +#include #include -#include -#include -#include - #include #include - -#include #include #include #include #include #include +#include #include #include #include @@ -23,6 +17,8 @@ #include #include #include +#include +#include #include #include #include @@ -30,18 +26,8 @@ #include "maplab-node/data-publisher-flow.h" #include "maplab-node/datasource-flow.h" #include "maplab-node/feature-tracking-flow.h" +#include "maplab-node/maplab-node.h" #include "maplab-node/synchronizer-flow.h" -#include "maplab-node/visual-localizer-flow.h" - -DEFINE_bool( - run_map_builder, true, - "When set to false, the map builder will be deactivated and no map will be " - "built."); - -DEFINE_int64( - visual_localization_enable_visualization, true, - "Enable visualization of the visual localization observations and inliers " - "as ROS message."); DECLARE_double(image_resize_factor); @@ -142,11 +128,9 @@ MaplabNode::MaplabNode( data_publisher_flow_->attachToMessageFlow(message_flow_); // === MAP BUILDER ==== - if (FLAGS_run_map_builder) { - map_builder_flow_.reset(new MapBuilderFlow( - *sensor_manager_, save_map_folder, synchronizer_flow_->T_M_B_buffer())); - map_builder_flow_->attachToMessageFlow(message_flow_); - } + map_builder_flow_.reset(new MapBuilderFlow( + *sensor_manager_, save_map_folder, synchronizer_flow_->T_M_B_buffer())); + map_builder_flow_->attachToMessageFlow(message_flow_); // === ENABLE MAPPING COMPONENTS === initializeOdometrySource(); @@ -282,9 +266,6 @@ void MaplabNode::initializeAbsolute6DoFSource() { if (absolute_6dof_sensor) { synchronizer_flow_->initializeAbsolute6DoFData(); - // TODO(mfehr): initialize absolute pose to localization result conversion - // block here. - LOG(INFO) << "[MaplabNode] External absolute 6DoF pose sensor is ENABLED!"; } else { LOG(WARNING) @@ -341,68 +322,6 @@ void MaplabNode::initializePointCloudMapSource() { } } -void MaplabNode::initializeLocalizationHandler() { - if (!localization_handler_flow) { - localization_handler_flow.reset(new LocalizationHandlerFlow( - *sensor_manager_, synchronizer_flow_->T_M_B_buffer())); - localization_handler_flow->attachToMessageFlow(message_flow_); - } -} - -void MaplabNode::enableVisualLocalization( - std::unique_ptr localization_map) { - std::lock_guard lock(mutex_); - CHECK(!is_running_) << "Cannot configure node after it started running!"; - - aslam::NCamera::Ptr ncamera = vi_map::getSelectedNCamera(*sensor_manager_); - CHECK(ncamera) << "[MaplabNode] NCamera required for visual localization"; - - CHECK(ncamera->has_T_G_B_fixed_localization_covariance()) - << "[MaplabNode] Currently, a fixed 6DoF covariance estimate is needed " - << "for visual localization fusion. Please provide it as " - << "T_G_B_fixed_covariance in the NCamera config file."; - - localizer_flow_.reset(new VisualLocalizerFlow( - *sensor_manager_, synchronizer_flow_->T_M_B_buffer(), - FLAGS_visual_localization_enable_visualization)); - - if (localization_map != nullptr) { - LOG(INFO) << "[MaplabNode] Enable visual localization with prior map..."; - localizer_flow_->setLocalizationMap(std::move(localization_map)); - } - localizer_flow_->attachToMessageFlow(message_flow_); - - initializeLocalizationHandler(); -} - -void MaplabNode::enableVisualLocalization() { - LOG(INFO) << "[MaplabNode] Enable visual localization without prior map..."; - // Since we don't have a prior localization map, we pass in a nullptr to avoid - // copy/paste code. - enableVisualLocalization(nullptr /*localization_map*/); -} - -void MaplabNode::enableLidarLocalization() { - std::lock_guard lock(mutex_); - LOG(INFO) << "[MaplabNode] Enable lidar localization without prior map..."; - CHECK(!is_running_) << "Cannot configure node after it started running!"; - - // TODO(LBern): Add lidar localization initialization here, this includes - // loading the localization map and setting up the blocks. - - LOG(FATAL) << "NOT IMPLEMENTED!"; - - initializeLocalizationHandler(); -} - -void MaplabNode::enableOnlineMapping() { - std::lock_guard lock(mutex_); - LOG(INFO) << "[MaplabNode] Enable online mapping..."; - CHECK(!is_running_) << "Cannot configure node after it started running!"; - - LOG(FATAL) << "NOT IMPLEMENTED!"; -} - void MaplabNode::start() { std::lock_guard lock(mutex_); LOG(INFO) << "[MaplabNode] Starting..."; @@ -420,6 +339,7 @@ void MaplabNode::start() { is_running_ = true; } + void MaplabNode::shutdown() { std::lock_guard lock(mutex_); LOG(INFO) << "[MaplabNode] Shutting down..."; diff --git a/applications/maplab-node/src/maplab-ros-node.cc b/applications/maplab-node/src/maplab-ros-node.cc index bbcd1c67ef..4831c87ea1 100644 --- a/applications/maplab-node/src/maplab-ros-node.cc +++ b/applications/maplab-node/src/maplab-ros-node.cc @@ -35,16 +35,6 @@ DEFINE_string( "Yaml file with all the sensor calibrations. Determines which sensors are " "used by MaplabNode."); -// ==== INPUT LOCALIZATION MAPS ==== - -DEFINE_string( - visual_localization_map_folder, "", - "Path to a visual localization summary map or a full VI-map used for " - "localization."); - -DEFINE_string( - lidar_localization_map_folder, "", "Path to a lidar localization map."); - // === OUTPUT MAPS === DEFINE_string( @@ -64,22 +54,6 @@ DEFINE_bool( // === MAPLAB NODE === -DEFINE_bool( - enable_visual_localization, true, - "The maplab node will use vision to localize, if enabled. Requires " - "--enable_visual_inertial_data=true"); - -DEFINE_bool( - enable_lidar_localization, false, - "The maplab node will use the lidar data to localize, if enabled. Requires " - "--enable_lidar_data=true " - "[NOT IMPLEMENTED YET]"); - -DEFINE_bool( - enable_online_mapping, false, - "The maplab node will try to optimize and loop close the pose graph online " - "and provide the localization with new maps. [NOT IMPLEMENTED YET]"); - DEFINE_string( robot_name, "robot", "Robot name to associate to map update message when using submapping. Make " @@ -139,35 +113,6 @@ MaplabRosNode::MaplabRosNode( maplab_node_.reset(new MaplabNode( FLAGS_sensor_calibration_file, map_output_folder_, message_flow_.get())); - // === LOCALIZATION MAPS === - // === VISION === - if (!FLAGS_visual_localization_map_folder.empty() && - FLAGS_enable_visual_localization) { - LOG(INFO) << "[MaplabROSNode] Loading visual localization map from: " - << FLAGS_visual_localization_map_folder << "'."; - - std::unique_ptr summary_map( - new summary_map::LocalizationSummaryMap); - summary_map::loadLocalizationSummaryMapFromAnyMapFile( - FLAGS_visual_localization_map_folder, summary_map.get()); - maplab_node_->enableVisualLocalization(std::move(summary_map)); - CHECK(!summary_map); - } else { - LOG(INFO) << "[MaplabROSNode] No visual localization map provided."; - } - // === LIDAR === - if (!FLAGS_lidar_localization_map_folder.empty() && - FLAGS_enable_lidar_localization) { - LOG(INFO) << "[MaplabROSNode] Loading lidar localization map from: " - << FLAGS_lidar_localization_map_folder << "'."; - - // TODO(LBern): load lidar localization map. - - maplab_node_->enableLidarLocalization(); - } else { - LOG(INFO) << "[MaplabROSNode] No lidar localization map provided."; - } - boost::function save_map_callback = boost::bind(&MaplabRosNode::saveMapCallback, this, _1, _2); diff --git a/applications/maplab-node/src/synchronizer.cc b/applications/maplab-node/src/synchronizer.cc index 2f27b0cfec..262ab6f32c 100644 --- a/applications/maplab-node/src/synchronizer.cc +++ b/applications/maplab-node/src/synchronizer.cc @@ -353,13 +353,7 @@ void Synchronizer::processOdometryMeasurement( VLOG_IF(1, !received_first_odometry_message_.exchange(true)) << "[MaplabNode-Synchronizer] Received first odometry message!"; - // To compute the odometry covariance for later filtering, it is necessary to - // keep track of the number of odometry measurements that were received over - // time. - ++odometry_measurement_counter_; - vio::ViNodeState odometry_copy = odometry; - odometry_copy.setSequenceNumber(odometry_measurement_counter_); - T_M_B_buffer_.bufferOdometryEstimate(odometry_copy); + T_M_B_buffer_.bufferOdometryEstimate(odometry); releaseData(); } @@ -590,58 +584,10 @@ void Synchronizer::releaseAbsolute6DoFData( for (const vi_map::Absolute6DoFMeasurement::Ptr& absolute_6dof_measurement : absolute_6dof_measurements) { CHECK(absolute_6dof_measurement); - - vi_map::Absolute6DoFMeasurement::Ptr absolute_6dof_measurement_copy( - new vi_map::Absolute6DoFMeasurement(*absolute_6dof_measurement)); - aslam::Transformation T_M_B_cached; - if (T_M_B_buffer_.getPoseAt( - absolute_6dof_measurement->getTimestampNanoseconds(), - &T_M_B_cached) <= vio_common::PoseLookupBuffer::ResultStatus:: - kSuccessImuForwardPropagation) { - absolute_6dof_measurement_copy->set_T_M_B_cached(T_M_B_cached); - - // The poses for which an odometry estimate is available are also released - // as localization results and subsequently fused with the localizations - - common::LocalizationResult::Ptr absolute_6dof_localization = - std::make_shared( - common::LocalizationType::kAbsolutePose); - - absolute_6dof_localization->localization_mode = - common::LocalizationMode::kGlobal; - absolute_6dof_localization->timestamp_ns = - absolute_6dof_measurement_copy->getTimestampNanoseconds(); - absolute_6dof_localization->sensor_id = - absolute_6dof_measurement_copy->getSensorId(); - - aslam::Transformation T_G_S = absolute_6dof_measurement_copy->get_T_G_S(); - aslam::Transformation T_S_B = - sensor_manager_ - .getSensor_T_B_S(absolute_6dof_measurement_copy->getSensorId()) - .inverse(); - absolute_6dof_localization->T_G_B = T_G_S * T_S_B; - absolute_6dof_localization->is_T_G_B_set = true; - const aslam::TransformationCovariance& T_G_S_covariance = - absolute_6dof_measurement_copy->get_T_G_S_covariance(); - aslam::common::rotateCovariance( - T_S_B.inverse(), T_G_S_covariance, - &absolute_6dof_localization->T_G_B_covariance); - - absolute_6dof_localization->is_T_G_M_set = false; - - std::lock_guard callback_lock( - localization_result_callback_mutex_); - for (const std::function& callback : - localization_result_callbacks_) { - callback(absolute_6dof_localization); - } - } - std::lock_guard callback_lock(absolute_6dof_callback_mutex_); for (const std::function& callback : absolute_6dof_callbacks_) { - callback(absolute_6dof_measurement_copy); + callback(absolute_6dof_measurement); } } } @@ -879,14 +825,6 @@ void Synchronizer::registerLoopClosureMeasurementCallback( loop_closure_callbacks_.push_back(callback); } -void Synchronizer::registerLocalizationResultMeasurementCallback( - const std::function& - callback) { - std::lock_guard lock(localization_result_callback_mutex_); - CHECK(callback); - localization_result_callbacks_.push_back(callback); -} - void Synchronizer::registerPointCloudMapSensorMeasurementCallback( const std::function< void(const vi_map::RosPointCloudMapSensorMeasurement::ConstPtr&)>& diff --git a/applications/maplab-node/src/visual-localizer-flow.cc b/applications/maplab-node/src/visual-localizer-flow.cc deleted file mode 100644 index 124b345a63..0000000000 --- a/applications/maplab-node/src/visual-localizer-flow.cc +++ /dev/null @@ -1,82 +0,0 @@ -#include "maplab-node/visual-localizer-flow.h" - -#include -#include -#include -#include - -#include "maplab-node/flow-topics.h" -#include "maplab-node/visual-localizer.h" - -DEFINE_double( - vio_max_localization_frequency_hz, 2.0, - "Maximum localization frequency [hz]."); - -namespace maplab { - -VisualLocalizerFlow::VisualLocalizerFlow( - const vi_map::SensorManager& sensor_manager, - const vio_common::PoseLookupBuffer& T_M_B_buffer, - const bool visualize_localization) - : localizer_(sensor_manager, visualize_localization), - T_M_B_buffer_(T_M_B_buffer), - min_localization_timestamp_diff_ns_( - kSecondsToNanoSeconds / FLAGS_vio_max_localization_frequency_hz), - previous_nframe_timestamp_ns_(-1) { - CHECK_GT(FLAGS_vio_max_localization_frequency_hz, 0.); -} - -void VisualLocalizerFlow::setLocalizationMap( - std::unique_ptr localization_map) { - CHECK(localization_map); - localizer_.setLocalizationMap(std::move(localization_map)); -} - -void VisualLocalizerFlow::attachToMessageFlow(message_flow::MessageFlow* flow) { - CHECK_NOTNULL(flow); - static constexpr char kSubscriberNodeName[] = "VisualLocalizer"; - - // Subscribe-publish: nframe to localization. - publish_localization_result_ = - flow->registerPublisher(); - - // NOTE: the publisher function pointer is copied intentionally; otherwise - // we would capture a reference to a temporary. - flow->registerSubscriber( - kSubscriberNodeName, message_flow::DeliveryOptions(), - std::bind( - &VisualLocalizerFlow::processTrackedNFrame, this, - std::placeholders::_1)); -} - -void VisualLocalizerFlow::processTrackedNFrame( - const vio::SynchronizedNFrame::ConstPtr& nframe) { - CHECK(nframe); - // Throttle the localization rate. - const int64_t current_timestamp = - nframe->nframe->getMinTimestampNanoseconds(); - { - std::unique_lock lock(m_previous_nframe_timestamp_ns_); - if ((previous_nframe_timestamp_ns_ != -1) && - ((current_timestamp - previous_nframe_timestamp_ns_) < - min_localization_timestamp_diff_ns_)) { - // Skip this frame. - return; - } - CHECK_GT(current_timestamp, previous_nframe_timestamp_ns_); - previous_nframe_timestamp_ns_ = current_timestamp; - } - - // Localize this nframe. - common::LocalizationResult::Ptr loc_result(new vio::LocalizationResult); - - vio::LocalizationResult* visual_loc_result = - static_cast(loc_result.get()); - - const bool success = - this->localizer_.localizeNFrame(nframe->nframe, visual_loc_result); - if (success) { - publish_localization_result_(loc_result); - } -} -} // namespace maplab diff --git a/applications/maplab-node/src/visual-localizer-helpers.cc b/applications/maplab-node/src/visual-localizer-helpers.cc deleted file mode 100644 index 17aa5152fe..0000000000 --- a/applications/maplab-node/src/visual-localizer-helpers.cc +++ /dev/null @@ -1,146 +0,0 @@ -#include "maplab-node/visual-localizer-helpers.h" - -#include -#include -#include -#include -#include -#include - -namespace maplab { -void convertVertexKeyPointToStructureMatchListToLocalizationResult( - const summary_map::LocalizationSummaryMap& map, - const aslam::VisualNFrame& query_nframe, - const vi_map::VertexKeyPointToStructureMatchList& inlier_structure_matches, - vio::LocalizationResult* localization_result) { - CHECK_NOTNULL(localization_result); - - const size_t num_cameras = query_nframe.getNumCameras(); - localization_result->keypoint_measurements_per_camera.resize(num_cameras); - localization_result->G_landmarks_per_camera.resize(num_cameras); - - const size_t num_matches = inlier_structure_matches.size(); - for (size_t cam_idx = 0u; cam_idx < num_cameras; ++cam_idx) { - localization_result->keypoint_measurements_per_camera[cam_idx].resize( - Eigen::NoChange, num_matches); - localization_result->G_landmarks_per_camera[cam_idx].resize( - Eigen::NoChange, num_matches); - } - - std::vector num_constraints_per_camera(num_cameras, 0u); - for (const vi_map::VertexKeyPointToStructureMatch& structure_match : - inlier_structure_matches) { - CHECK(structure_match.landmark_result.isValid()); - - const size_t camera_idx = structure_match.frame_index_query; - CHECK_LT(camera_idx, num_cameras); - - Eigen::Matrix3Xd& G_landmarks = - localization_result->G_landmarks_per_camera[camera_idx]; - Eigen::Matrix2Xd& keypoint_measurements = - localization_result->keypoint_measurements_per_camera[camera_idx]; - const size_t constraint_idx = num_constraints_per_camera[camera_idx]; - CHECK_LT(constraint_idx, static_cast(G_landmarks.cols())); - CHECK_LT(constraint_idx, static_cast(keypoint_measurements.cols())); - - G_landmarks.col(constraint_idx) = - map.getGLandmarkPosition(structure_match.landmark_result); - keypoint_measurements.col(constraint_idx) = - query_nframe.getFrame(camera_idx) - .getKeypointMeasurement(structure_match.keypoint_index_query); - - ++num_constraints_per_camera[camera_idx]; - } - - for (size_t cam_idx = 0u; cam_idx < num_cameras; ++cam_idx) { - localization_result->keypoint_measurements_per_camera[cam_idx] - .conservativeResize( - Eigen::NoChange, num_constraints_per_camera[cam_idx]); - localization_result->G_landmarks_per_camera[cam_idx].conservativeResize( - Eigen::NoChange, num_constraints_per_camera[cam_idx]); - } - CHECK(localization_result->isValid()); -} - -void subselectStructureMatches( - const summary_map::LocalizationSummaryMap& map, - const summary_map::SummaryMapCachedLookups& map_cached_lookup, - const aslam::VisualNFrame& nframe, - size_t num_max_landmarks_to_keep_per_camera, - vi_map::VertexKeyPointToStructureMatchList* structure_matches) { - CHECK_NOTNULL(structure_matches); - CHECK_GT(num_max_landmarks_to_keep_per_camera, 0u); - - // Early exit. - if (structure_matches->size() < - num_max_landmarks_to_keep_per_camera * nframe.getNumCameras()) { - return; - } - - // Create an occupancy grid for each camera. - const size_t kNumOccupancyGridRows = 3u; - const size_t kNumOccupancyGridCols = 5u; - - typedef aslam::common::WeightedKeypoint PointType; - typedef aslam::common::WeightedOccupancyGrid OccupancyGrid; - std::vector grid_per_camera; - for (size_t cam_idx = 0u; cam_idx < nframe.getNumCameras(); ++cam_idx) { - const size_t height = nframe.getCamera(cam_idx).imageHeight(); - const size_t width = nframe.getCamera(cam_idx).imageWidth(); - const size_t cell_size_rows = height / kNumOccupancyGridRows; - const size_t cell_size_cols = width / kNumOccupancyGridCols; - grid_per_camera.emplace_back( - OccupancyGrid(height, width, cell_size_rows, cell_size_cols)); - } - - // Populate the grids with all the points. - size_t match_idx = 0u; - for (const vi_map::VertexKeyPointToStructureMatch& match : - *structure_matches) { - double disparity_angle_rad = - summary_map::getMaxDisparityRadAngleOfLandmarkObservationBundle( - map, map_cached_lookup, match.landmark_result); - - const Eigen::Block keypoint = - nframe.getFrame(match.frame_index_query) - .getKeypointMeasurement(match.keypoint_index_query); - CHECK_LT(match.frame_index_query, grid_per_camera.size()); - // Coordinates of the keypoint are swapped as the grid points use the - // (row, column) convention. - grid_per_camera[match.frame_index_query].addPointUnconditional( - PointType(keypoint(1), keypoint(0), disparity_angle_rad, match_idx)); - ++match_idx; - } - - // Prune landmarks from the grid weighted by disparity angle of the landmark - // observation rays bundle while ensuring an even distribution. - std::vector indices_to_remove(structure_matches->size(), true); - for (size_t cam_idx = 0u; cam_idx < nframe.getNumCameras(); ++cam_idx) { - OccupancyGrid& grid = grid_per_camera[cam_idx]; - grid.removePointsFromFullestCellsUntilSize( - num_max_landmarks_to_keep_per_camera); - - std::vector subsampled_points; - grid.getAllPointsInGrid(&subsampled_points); - - for (const PointType& point : subsampled_points) { - indices_to_remove[point.id] = false; - } - } - - int idx = 0; - structure_matches->erase( - std::remove_if( - structure_matches->begin(), structure_matches->end(), - [&indices_to_remove, - &idx](const vi_map::VertexKeyPointToStructureMatch&) { - return indices_to_remove[idx++]; - }), - structure_matches->end()); - - CHECK_LE( - structure_matches->size(), - num_max_landmarks_to_keep_per_camera * nframe.getNumCameras()); - CHECK(!structure_matches->empty()); -} -} // namespace maplab diff --git a/applications/maplab-node/src/visual-localizer.cc b/applications/maplab-node/src/visual-localizer.cc deleted file mode 100644 index f1ffc5e82f..0000000000 --- a/applications/maplab-node/src/visual-localizer.cc +++ /dev/null @@ -1,148 +0,0 @@ -#include "maplab-node/visual-localizer.h" - -#include - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "maplab-node/visual-localizer-helpers.h" - -DEFINE_uint64( - max_num_localization_constraints, 25u, - "Max. number of localization constraints to process per camera. " - "No prunning when 0."); - -namespace maplab { -VisualLocalizer::VisualLocalizer( - const vi_map::SensorManager& sensor_manager, - std::unique_ptr localization_map, - const bool visualize_localization) - : VisualLocalizer(sensor_manager, visualize_localization) { - setLocalizationMap(std::move(localization_map)); -} - -VisualLocalizer::VisualLocalizer( - const vi_map::SensorManager& sensor_manager, - const bool visualize_localization) - : sensor_manager_(sensor_manager) { - current_localization_mode_ = VisualLocalizer::LocalizationMode::kGlobal; - - global_loop_detector_.reset(new loop_detector_node::LoopDetectorNode); - CHECK(global_loop_detector_); - - if (visualize_localization) { - global_loop_detector_->instantiateVisualizer(); - } -} - -VisualLocalizer::LocalizationMode VisualLocalizer::getCurrentLocalizationMode() - const { - return current_localization_mode_; -} - -void VisualLocalizer::setLocalizationMap( - std::unique_ptr localization_map) { - CHECK(localization_map); - localization_map_ = std::move(localization_map); - - // Update localization map cache. - map_cached_lookup_.reset( - new summary_map::SummaryMapCachedLookups(*localization_map_)); - - LOG(INFO) << "Building localization database..."; - global_loop_detector_->addLocalizationSummaryMapToDatabase( - *localization_map_); - LOG(INFO) << "Done."; -} - -bool VisualLocalizer::localizeNFrame( - const aslam::VisualNFrame::ConstPtr& nframe, - vio::LocalizationResult* localization_result) const { - CHECK(nframe); - CHECK_NOTNULL(localization_result); - - if (!localization_map_) { - LOG(WARNING) << "Localization failed: The localizer doesn't have a visual " - "localization map (yet)!"; - return false; - } - CHECK(map_cached_lookup_) - << "SummaryMapCachedLookups has not been initialized!"; - - bool result = false; - switch (current_localization_mode_) { - case VisualLocalizer::LocalizationMode::kGlobal: - result = localizeNFrameGlobal(nframe, localization_result); - break; - case VisualLocalizer::LocalizationMode::kMapTracking: - result = localizeNFrameMapTracking(nframe, localization_result); - break; - default: - LOG(FATAL) << "Unknown localization mode."; - break; - } - - localization_result->summary_map_id = localization_map_->id(); - localization_result->timestamp_ns = nframe->getMinTimestampNanoseconds(); - localization_result->nframe_id = nframe->getId(); - localization_result->sensor_id = nframe->getNCamera().getId(); - localization_result->localization_mode = current_localization_mode_; - // todo(nscheidt): compute a localization covariance rather than use a fixed - // value from a config - CHECK(nframe->getNCamera().get_T_G_B_fixed_localization_covariance( - &localization_result->T_G_B_covariance)) - << "Currently, a fixed covariance value is required for visual " - << "localization. Please provide it as T_G_B_fixed_covariance in the " - << "NCamera config file."; - return result; -} - -bool VisualLocalizer::localizeNFrameGlobal( - const aslam::VisualNFrame::ConstPtr& nframe, - vio::LocalizationResult* localization_result) const { - CHECK_NOTNULL(localization_result); - CHECK(localization_map_); - - constexpr bool kSkipUntrackedKeypoints = false; - unsigned int num_lc_matches; - vi_map::VertexKeyPointToStructureMatchList inlier_structure_matches; - const bool success = global_loop_detector_->findNFrameInSummaryMapDatabase( - *nframe, kSkipUntrackedKeypoints, *localization_map_, - &localization_result->T_G_B, &num_lc_matches, &inlier_structure_matches); - - if (!success || inlier_structure_matches.empty()) { - return false; - } - - // Optionally sub-select the localizations by ensuring a good coverage over - // the image. In case of conflicts the largest disparity angle between all - // rays of all observations of the landmark will be used as a score. - if (FLAGS_max_num_localization_constraints > 0) { - subselectStructureMatches( - *localization_map_, *map_cached_lookup_, *nframe, - FLAGS_max_num_localization_constraints, &inlier_structure_matches); - } - convertVertexKeyPointToStructureMatchListToLocalizationResult( - *localization_map_, *nframe, inlier_structure_matches, - localization_result); - - return true; -} - -bool VisualLocalizer::localizeNFrameMapTracking( - const aslam::VisualNFrame::ConstPtr& /*nframe*/, - vio::LocalizationResult* /*localization_result*/) const { - CHECK(localization_map_); - - LOG(FATAL) << "Not implemented yet."; - return false; -} - -} // namespace maplab diff --git a/common/vio-common/include/vio-common/vio-types.h b/common/vio-common/include/vio-common/vio-types.h index 13fc0bc71e..6e483f724a 100644 --- a/common/vio-common/include/vio-common/vio-types.h +++ b/common/vio-common/include/vio-common/vio-types.h @@ -159,8 +159,6 @@ class ViNodeState { gyro_bias_(Eigen::Vector3d::Zero()), pose_covariance_(Eigen::Matrix::Zero()), twist_covariance_(Eigen::Matrix::Zero()) { - T_UTM_B_.setIdentity(); - T_UTM_I_.setIdentity(); } ViNodeState() @@ -171,8 +169,6 @@ class ViNodeState { pose_covariance_(Eigen::Matrix::Zero()), twist_covariance_(Eigen::Matrix::Zero()) { T_M_I_.setIdentity(); - T_UTM_B_.setIdentity(); - T_UTM_I_.setIdentity(); } ViNodeState( @@ -186,8 +182,6 @@ class ViNodeState { gyro_bias_(gyro_bias), pose_covariance_(Eigen::Matrix::Zero()), twist_covariance_(Eigen::Matrix::Zero()) { - T_UTM_B_.setIdentity(); - T_UTM_I_.setIdentity(); } ViNodeState( @@ -202,8 +196,6 @@ class ViNodeState { pose_covariance_(Eigen::Matrix::Zero()), twist_covariance_(Eigen::Matrix::Zero()) { CHECK(aslam::time::isValidTime(timestamp_ns)); - T_UTM_B_.setIdentity(); - T_UTM_I_.setIdentity(); } ViNodeState( @@ -220,8 +212,6 @@ class ViNodeState { pose_covariance_(pose_covariance), twist_covariance_(twist_covariance) { CHECK(aslam::time::isValidTime(timestamp_ns)); - T_UTM_B_.setIdentity(); - T_UTM_I_.setIdentity(); } virtual ~ViNodeState() {} @@ -234,15 +224,6 @@ class ViNodeState { timestamp_ns_ = timestamp_ns; } - inline int64_t getSequenceNumber() const { - return sequence_number_; - } - - inline void setSequenceNumber(int64_t sequence_number) { - CHECK_GE(sequence_number, 0); - sequence_number_ = sequence_number; - } - inline const aslam::Transformation& get_T_M_I() const { return T_M_I_; } @@ -268,12 +249,6 @@ class ViNodeState { return (Eigen::Matrix() << getAccBias(), getGyroBias()) .finished(); } - inline const aslam::Transformation& get_T_UTM_I() const { - return T_UTM_I_; - } - inline const aslam::Transformation& get_T_UTM_B() const { - return T_UTM_B_; - } inline void set_T_M_I(const aslam::Transformation& T_M_I) { T_M_I_ = T_M_I; @@ -295,12 +270,6 @@ class ViNodeState { const Eigen::Matrix& twist_covariance) { twist_covariance_ = twist_covariance; } - inline void set_T_UTM_I(const aslam::Transformation& T_UTM_I) { - T_UTM_I_ = T_UTM_I; - } - inline void set_T_UTM_B(const aslam::Transformation& T_UTM_B) { - T_UTM_B_ = T_UTM_B; - } /// The first 12x12 sub-matrix of the rovio state contains both /// the pose covariance matrix P and @@ -323,9 +292,6 @@ class ViNodeState { private: int64_t timestamp_ns_; - /// To keep track of the number of measurements we have received - int64_t sequence_number_; - /// The pose taking points from the body frame to the world frame. aslam::Transformation T_M_I_; /// The velocity (m/s). @@ -339,11 +305,6 @@ class ViNodeState { Eigen::Matrix pose_covariance_; /// The 6DoF twist covariance matrix Eigen::Matrix twist_covariance_; - - /// Transformation of IMU wrt UTM reference frame. - aslam::Transformation T_UTM_I_; - /// Transformation of the body frame wrt the UTM reference frame. - aslam::Transformation T_UTM_B_; }; typedef std::pair NFrameIdViNodeStatePair; @@ -387,18 +348,6 @@ struct LinearInterpolationFunctor { t1, x1.getGyroBias(), t2, x2.getGyroBias(), t_interpolated, &gyro_bias_interpolated); x_interpolated->setGyroBias(gyro_bias_interpolated); - - aslam::Transformation T_UTM_I_interpolated; - interpolateTransformation( - t1, x1.get_T_UTM_I(), t2, x2.get_T_UTM_I(), t_interpolated, - &T_UTM_I_interpolated); - x_interpolated->set_T_UTM_I(T_UTM_I_interpolated); - - aslam::Transformation T_UTM_B_interpolated; - interpolateTransformation( - t1, x1.get_T_UTM_B(), t2, x2.get_T_UTM_B(), t_interpolated, - &T_UTM_B_interpolated); - x_interpolated->set_T_UTM_B(T_UTM_B_interpolated); } }; From 6bc2a927b9de4c3ae2a9e11799453a90d3a92acb Mon Sep 17 00:00:00 2001 From: Andrei Cramariuc Date: Fri, 31 Mar 2023 10:58:14 +0200 Subject: [PATCH 2/2] Small cleanup of data publishing --- .../include/maplab-node/data-publisher-flow.h | 1 - .../include/maplab-node/odometry-estimate.h | 5 +--- .../euroc/ros/euroc-maplab-node-rosparam.yaml | 3 +-- .../euroc/ros/euroc-rovioli-rosparam.yaml | 1 + .../maplab-node/src/data-publisher-flow.cc | 26 ++++--------------- 5 files changed, 8 insertions(+), 28 deletions(-) diff --git a/applications/maplab-node/include/maplab-node/data-publisher-flow.h b/applications/maplab-node/include/maplab-node/data-publisher-flow.h index 4e8498d964..3530c80886 100644 --- a/applications/maplab-node/include/maplab-node/data-publisher-flow.h +++ b/applications/maplab-node/include/maplab-node/data-publisher-flow.h @@ -50,7 +50,6 @@ class DataPublisherFlow { ros::Publisher pub_velocity_I_; ros::Publisher pub_imu_acc_bias_; ros::Publisher pub_imu_gyro_bias_; - ros::Publisher pub_extrinsics_T_C_Bs_; common::TimeoutCounter map_publisher_timeout_; diff --git a/applications/maplab-node/include/maplab-node/odometry-estimate.h b/applications/maplab-node/include/maplab-node/odometry-estimate.h index c4e5d8cdb4..5c790167bd 100644 --- a/applications/maplab-node/include/maplab-node/odometry-estimate.h +++ b/applications/maplab-node/include/maplab-node/odometry-estimate.h @@ -7,6 +7,7 @@ #include #include +// TODO(smauq): Fix this up, this is a completely useless duplication namespace maplab { struct OdometryEstimate { MAPLAB_POINTER_TYPEDEFS(OdometryEstimate); @@ -14,10 +15,6 @@ struct OdometryEstimate { int64_t timestamp_ns; vio::ViNodeState vinode; - - // Mapping maplab camera index to the estimated camera extrinsics. - AlignedUnorderedMap - maplab_camera_index_to_T_C_B; }; } // namespace maplab #endif // MAPLAB_NODE_ODOMETRY_ESTIMATE_H_ diff --git a/applications/maplab-node/launch/euroc/ros/euroc-maplab-node-rosparam.yaml b/applications/maplab-node/launch/euroc/ros/euroc-maplab-node-rosparam.yaml index 5dff745c61..d6c38f1dc5 100644 --- a/applications/maplab-node/launch/euroc/ros/euroc-maplab-node-rosparam.yaml +++ b/applications/maplab-node/launch/euroc/ros/euroc-maplab-node-rosparam.yaml @@ -44,7 +44,6 @@ map_builder_save_point_cloud_maps_as_resources: false # TF tf_map_frame: map tf_mission_frame: mission -tf_imu_frame: imu # DEBUGGING AND LOGGING alsologtostderr: true @@ -53,5 +52,5 @@ v: 1 publish_debug_markers: false vis_default_namespace: maplab_rviz export_estimated_poses_to_csv: "" -detection_visualize_keypoints: false +detection_visualize_keypoints: true feature_tracker_visualize_keypoint_matches: true diff --git a/applications/maplab-node/launch/euroc/ros/euroc-rovioli-rosparam.yaml b/applications/maplab-node/launch/euroc/ros/euroc-rovioli-rosparam.yaml index 0829fc6ec3..636fe81dd6 100644 --- a/applications/maplab-node/launch/euroc/ros/euroc-rovioli-rosparam.yaml +++ b/applications/maplab-node/launch/euroc/ros/euroc-rovioli-rosparam.yaml @@ -47,6 +47,7 @@ alsologtostderr: true colorlogtostderr: true v: 1 publish_debug_markers: false +rovioli_visualize_map: false vis_default_namespace: maplab_rviz export_estimated_poses_to_csv: "" detection_visualize_keypoints: false diff --git a/applications/maplab-node/src/data-publisher-flow.cc b/applications/maplab-node/src/data-publisher-flow.cc index 50c0007ea7..abfcb034d2 100644 --- a/applications/maplab-node/src/data-publisher-flow.cc +++ b/applications/maplab-node/src/data-publisher-flow.cc @@ -12,11 +12,6 @@ DEFINE_double( map_publish_interval_s, 2.0, "Interval of publishing the visual-inertial map to ROS [seconds]."); -DEFINE_bool( - publish_only_on_keyframes, false, - "Publish frames only on keyframes instead of the IMU measurements. This " - "means a lower frequency."); - DEFINE_bool( publish_debug_markers, true, "Publish debug sphere markers for T_M_B."); @@ -27,8 +22,7 @@ DEFINE_string( DEFINE_bool( visualize_map, true, - "Set to false to disable map visualization. Note: map building needs to be " - "active for the visualization."); + "Set to false to disable map visualization during building."); #include "maplab-node/vi-map-with-mutex.h" @@ -62,8 +56,6 @@ void DataPublisherFlow::registerPublishers() { node_handle_.advertise(kTopicBiasAcc, 1); pub_imu_gyro_bias_ = node_handle_.advertise(kTopicBiasGyro, 1); - pub_extrinsics_T_C_Bs_ = node_handle_.advertise( - kCameraExtrinsicTopic, 1); } void DataPublisherFlow::attachToMessageFlow(message_flow::MessageFlow* flow) { @@ -95,17 +87,6 @@ void DataPublisherFlow::attachToMessageFlow(message_flow::MessageFlow* flow) { [this](const OdometryEstimate::ConstPtr& state) { CHECK(state != nullptr); publishOdometryState(state->timestamp_ns, state->vinode); - - // Publish estimated camera-extrinsics. - geometry_msgs::PoseArray T_C_Bs_message; - T_C_Bs_message.header.frame_id = FLAGS_tf_imu_frame; - T_C_Bs_message.header.stamp = createRosTimestamp(state->timestamp_ns); - for (const auto& cam_idx_T_C_B : state->maplab_camera_index_to_T_C_B) { - geometry_msgs::Pose T_C_B_message; - tf::poseKindrToMsg(cam_idx_T_C_B.second, &T_C_B_message); - T_C_Bs_message.poses.emplace_back(T_C_B_message); - } - pub_extrinsics_T_C_Bs_.publish(T_C_Bs_message); }); // CSV export for end-to-end test. @@ -161,8 +142,11 @@ void DataPublisherFlow::publishOdometryState( const vi_map::SensorType base_sensor_type = sensor_manager_.getSensorType(base_sensor_id); const std::string base_sensor_tf_frame_id = - visualization::convertSensorTypeToTfFrameId(base_sensor_type); + visualization::convertSensorTypeToTfFrameId(base_sensor_type) + + "_0_BASE"; + // TODO(smauq): Clean up TF frame naming on publishing, + // while also not conflicting with rovioli visualization::publishTF( T_M_B, FLAGS_tf_mission_frame, base_sensor_tf_frame_id, timestamp_ros);