This repository has been archived by the owner on Jan 23, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
197 lines (148 loc) · 6.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from __future__ import print_function
import numpy as np
import os
import sys
import time
# Parse command line arguments.
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('index')
parser.add_argument('train_selector')
parser.add_argument('valid_selector')
parser.add_argument('-n_train_samples', type=int, default=-1)
parser.add_argument('-n_valid_samples', type=int, default=-1)
parser.add_argument('-batch_size', type=int, default=32)
parser.add_argument('-buffer_size', type=int, default=32)
parser.add_argument('-epochs', type=int, default=100)
parser.add_argument('-model_path', default='models/test_model/')
parser.add_argument('-log_path', default='tensorboard/')
parser.add_argument('-log_name', default=None)
parser.add_argument('-checkpoints', default=5)
parser.add_argument('-v', type=int, default=0)
parser.add_argument('-njobs', type=int, default=8)
args = parser.parse_args()
# Load the dataset.
from dataset import Dataset
dataset_train = Dataset(args.index, selector=args.train_selector, internal_shuffle=True,
num_of_samples=args.n_train_samples, n_jobs=args.njobs, verbose=args.v)
dataset_valid = Dataset(args.index, selector=args.valid_selector, internal_shuffle=True,
num_of_samples=args.n_valid_samples, n_jobs=args.njobs, verbose=args.v)
dataset_train.train_scaler(remove_mean=True, remove_std=True, scaler_batch_size=args.batch_size)
dataset_valid.set_scaler(dataset_train.get_scaler())
print('Train with %d images' % (dataset_train.n_samples))
print('Valid with %d images' % (dataset_valid.n_samples))
ids_train = np.arange(dataset_train.n_samples)
ids_valid = np.arange(dataset_valid.n_samples)
# Create batch generators for the train and validation sets.
from generator import Generator
gen_train = Generator(dataset_train, ids_train, batch_size=args.batch_size, shuffle=True, buffer_size=args.buffer_size, verbose=args.v)
gen_valid = Generator(dataset_valid, ids_valid, batch_size=args.batch_size, shuffle=True, buffer_size=args.buffer_size, verbose=args.v)
# Create model directory if it doesn't exist.
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
# Define tf model.
import tensorflow as tf
tf.reset_default_graph()
# Set tensorflow to only log errors
if args.v == 0:
tf.logging.set_verbosity(tf.logging.ERROR)
from model import init_model
print("Input shape: ", dataset_train.shape)
init_model(dataset_train.shape)
graph = tf.get_default_graph()
# Inputs.
input_image_tf = graph.get_tensor_by_name('input_image:0')
y_true_tf = graph.get_tensor_by_name('y_true:0')
training_tf = graph.get_tensor_by_name('training:0')
time_data_tf = graph.get_tensor_by_name('time_data:0')
time_train_tf = graph.get_tensor_by_name('time_train:0')
loss_tf = graph.get_tensor_by_name('loss_mse:0')
error_tf = graph.get_tensor_by_name('error_mae:0')
train_op_tf = graph.get_operation_by_name('train_op')
# Summaries.
summary_tf = tf.summary.merge_all('summary')
summary_time_tf = tf.summary.merge_all('summary_time')
# Model save.
model_saver = tf.train.Saver(max_to_keep=args.checkpoints)
# Global step for logging.
global_step = 0
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# Tensorboard statistics.
if args.log_name:
train_log = os.path.join(args.log_path, args.log_name, 'train')
train_writer = tf.summary.FileWriter(train_log, sess.graph)
valid_log = os.path.join(args.log_path, args.log_name, 'valid')
valid_writer = tf.summary.FileWriter(valid_log)
# Initialize tf variables.
tf.global_variables_initializer().run()
# Iterate network epochs.
for epoch in range(0, args.epochs):
train_loss = 0
train_error = 0
train_step = 0
valid_loss = 0
valid_error = 0
valid_step = 0
# Sequence of train and validation batches.
batches = np.array([1] * gen_train.n_batches + [0] * gen_valid.n_batches)
np.random.shuffle(batches)
console_output_size = 0
for train in batches:
if train:
data_start = time.time()
images_batch, labels_batch = gen_train.next()
time_data = time.time() - data_start
# Run optimizer and calculate loss.
train_start = time.time()
batch_summary, batch_loss, batch_error, _ = sess.run(
[summary_tf, loss_tf, error_tf, train_op_tf],
feed_dict={input_image_tf: images_batch,
y_true_tf: labels_batch, training_tf: True})
time_train = time.time() - train_start
batch_summary_time = sess.run(
summary_time_tf,
feed_dict={time_data_tf: time_data,
time_train_tf: time_train})
if args.log_name:
train_writer.add_summary(batch_summary, global_step)
train_writer.add_summary(batch_summary_time, global_step)
train_loss += batch_loss
train_error += batch_error
train_step += 1
else:
images_batch, labels_batch = gen_valid.next()
# Calculate validation loss.
batch_summary, batch_loss, batch_error = sess.run(
[summary_tf, loss_tf, error_tf],
feed_dict={input_image_tf: images_batch,
y_true_tf: labels_batch})
if args.log_name:
valid_writer.add_summary(batch_summary, global_step)
valid_loss += batch_loss
valid_error += batch_error
valid_step += 1
# Print results.
sys.stdout.write('\b' * console_output_size)
console_output = 'epoch %2d ' % epoch
if train_step:
console_output += 'Train: loss_mse %.4f err_mae %.4f | ' % (
train_loss / train_step, train_error / train_step)
if valid_step:
console_output += 'Val: loss_mse: %.4f err_mae %.4f' % (
valid_loss / valid_step, valid_error / valid_step)
console_output_size = len(console_output)
sys.stdout.write(console_output)
sys.stdout.flush()
global_step += 1
print()
# Only save the model if it's better.
final_valid_loss = (valid_loss / valid_step)
if epoch == 0 or final_valid_loss < best_loss:
model_name = os.path.join(args.model_path, 'model-%d' % epoch)
model_saver.save(sess, model_name, global_step=global_step)
# Update best loss.
best_loss = final_valid_loss
dataset_train.stop()
dataset_valid.stop()