This repository has been archived by the owner on Jan 23, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
244 lines (197 loc) · 10.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from __future__ import print_function
import os
import time
import glob
import sys
import threading
from copy import deepcopy
import numpy as np
import pandas as pd
import cv2
from sklearn.preprocessing import StandardScaler
import carnivalmirror as cm
class Dataset(object):
def __init__(self, index_csv, selector='', num_of_samples=-1,
internal_shuffle=False, n_jobs=1, verbose=0):
"""
NOTE: - For larger datasets only process the paths and load the data later in the get_outputs() function.
- selector should be formatted like: "image03+2011_09_26,image03+2011_09_28" to use all the folders with
tags image03 and 2011_09_26, and with tags image03 and 2011_09_28 (no spaces!)
"""
self.use_scaler = False
self.n_jobs = n_jobs
self.verbose = verbose
self.resolution_reduction_factor = 1
self.label_scale_factor = 100
self._lock_appd = threading.Lock()
folders = pd.read_csv(index_csv)
# assumption: the index csv file is inside the folder where the folders with images are
dir_path = os.path.dirname(os.path.abspath(index_csv))
# apply the selector
folders['selector'] = folders['tags'].apply(lambda tags: self.apply_selector(tags, selector))
folders = folders[folders['selector']==True]
# group the different calibrations (later we need one sampler per group)
folders['cal_group'] = folders.groupby(['width', 'height', 'fx', 'cx', 'fy', 'cy', 'k1', 'k2',
'p1', 'p2', 'k3']).ngroup()
self.cal_groups = dict()
for cal in folders['cal_group'].unique():
self.cal_groups[cal] = folders.loc[[folders['cal_group'].eq(cal).idxmax()],
['width', 'height', 'fx', 'cx', 'fy', 'cy', 'k1', 'k2', 'p1', 'p2', 'k3']]
# load the images from every folder
data = pd.DataFrame(columns=['image_name', 'cal_group'])
for folder_idx, folder in folders.iterrows():
image_names = glob.glob(os.path.join(dir_path, folder['path_to_dir'])+'/*')
n = len(image_names)
new_df = pd.DataFrame({'image_name': image_names, 'cal_group': [folder['cal_group']]*n})
data = pd.concat([data, new_df], sort=False)
if self.verbose > 0:
print("%d images found in %d folders grouped in %d groups from index file %s, when applying selector '%s'." %
(data.shape[0], folders.shape[0], len(folders['cal_group'].unique()), index_csv, selector))
# Initialize the samplers:
samplers_init_start = time.time()
self.initialize_samplers()
if self.verbose > 0:
print("The samplers were initialized in %.02f sec." % (time.time()-samplers_init_start))
# internal shuffle if true
if internal_shuffle:
data = data.sample(frac=1).reset_index(drop=True)
# retrieve only the amount of samples as requested
if num_of_samples <= 0:
self.n_samples = data.shape[0]
else:
self.n_samples = num_of_samples
data = data.head(self.n_samples)
# read data from the data-frame
self.image_paths = data['image_name'].tolist()
self.cal_group_assignment = data['cal_group'].tolist()
# Get final output shape.
output, _ = self.get_outputs([0])
self.shape = output[0].shape
def train_scaler(self, remove_mean=False, remove_std=False,
scaler_batch_size=32, scaler_epochs=256):
assert(remove_mean or remove_std)
# Mean and std scaling.
from sklearn.preprocessing import StandardScaler
self.scaler = StandardScaler(with_mean=remove_mean, with_std=remove_std)
if self.verbose > 0:
print_width = 10
sys.stdout.write("Training scaler." + ' ' * print_width)
# Arbitrary sampling of data to determine mean.
# Hacky, but much faster than iterating over the whole data.
for epoch in range(scaler_epochs):
ids_batch = np.random.choice(self.n_samples, scaler_batch_size)
images_batch, _ = self.get_outputs(ids_batch)
images_batch = np.reshape(images_batch, (images_batch.shape[0], -1))
self.scaler.partial_fit(images_batch)
if self.verbose > 0:
sys.stdout.write('\b' * print_width)
sys.stdout.write(' %4d/%4d' % (epoch+1, scaler_epochs))
sys.stdout.flush()
if self.verbose > 0:
print()
self.use_scaler = True
def set_scaler(self, scaler):
self.use_scaler = True
self.scaler = scaler
def get_scaler(self):
return deepcopy(self.scaler)
def get_outputs(self, ids):
image_outputs = []
label_outputs = []
# First load images
images = []
cal_infos = []
for id in ids:
# Load the image.
image = cv2.imread(self.image_paths[id], cv2.IMREAD_COLOR)
assert(image.shape[-1] == 3)
images.append(image)
# Load calibration info
cal_group = self.cal_group_assignment[id]
target_width = int(float(self.cal_groups[cal_group]['width'].values[0]) / self.resolution_reduction_factor)
target_height = int(float(self.cal_groups[cal_group]['height'].values[0]) / self.resolution_reduction_factor)
cal_infos.append((cal_group, target_width, target_height))
miscals = []
self._lock_appd.acquire()
for cal_info in cal_infos:
cal_group, target_width, target_height = cal_info
# Sample a miscalibration, apply it, and calculate the respective APPD
miscal = self.samplers[cal_group].next()
appd = miscal.appd(reference=self.samplers[cal_group].reference,
width=target_width, height=target_height, normalized=True)
miscals.append(miscal)
label = appd * self.label_scale_factor
label_outputs.append(label)
self._lock_appd.release()
# Form image batch from raw data.
for cal_info, miscal, image in zip(cal_infos, miscals, images):
_, target_width, target_height = cal_info
image = miscal.rectify(image,
result_width=target_width,
result_height=target_height,
mode='preserving')
# Collect batch data.
image_outputs.append(image)
# Convert to numpy array.
image_outputs = np.array(image_outputs).astype(np.float)
label_outputs = np.array(label_outputs).astype(np.float)
# Pass batch thorough scaler to remove mean and/or std.
if self.use_scaler:
shape = image_outputs.shape
image_outputs = np.reshape(image_outputs, (image_outputs.shape[0], -1))
image_outputs = self.scaler.transform(image_outputs)
image_outputs = np.reshape(image_outputs, shape)
return image_outputs, label_outputs
def apply_selector(self, tags, selector):
"""Checks if all the tags in 'selector' (comma,no-space separated) are in 'tags'"""
for selector_group in selector.split(','):
found_matching_tag_group = True
for tag in selector_group.split('+'):
if tag not in tags.split(','):
found_matching_tag_group = False
if found_matching_tag_group:
return True
if len(selector.split(','))==0:
return True
else:
return False
def initialize_samplers(self):
"""Initialize a separate sampler for each group of calibrations"""
self.samplers = dict()
n_jobs_per_group = max(1, int(self.n_jobs/len(self.cal_groups)))
for cal_group in self.cal_groups:
cg = self.cal_groups[cal_group]
# Calculate the rescaled output resolution
output_width = int(float(self.cal_groups[cal_group]['width']) / self.resolution_reduction_factor)
output_height = int(float(self.cal_groups[cal_group]['height']) / self.resolution_reduction_factor)
# Create the reference (correct calibration)
reference = cm.Calibration(K=[cg['fx'].values[0], cg['fy'].values[0], cg['cx'].values[0], cg['cy'].values[0]],
D=[cg['k1'].values[0], cg['k2'].values[0], cg['p1'].values[0], cg['p2'].values[0], cg['k3'].values[0]],
width=cg['width'].values[0], height=cg['height'].values[0])
# Establish the perturbation ranges
# [!!!] This needs to be fine tuned depending on the dataset used
ranges = {'fx': (0.95 * cg['fx'].values[0], 1.20 * cg['fx'].values[0]),
'fy': (0.95 * cg['fy'].values[0], 1.20 * cg['fy'].values[0]),
'cx': (0.95 * cg['cx'].values[0], 1.05 * cg['cx'].values[0]),
'cy': (0.95 * cg['cy'].values[0], 1.05 * cg['cy'].values[0]),
'k1': (0.85 * cg['k1'].values[0], 1.15 * cg['k1'].values[0]),
'k2': (0.85 * cg['k2'].values[0], 1.15 * cg['k2'].values[0]),
'p1': (0.85 * cg['p1'].values[0], 1.15 * cg['p1'].values[0]),
'p2': (0.85 * cg['p2'].values[0], 1.15 * cg['p2'].values[0]),
'k3': (0.85 * cg['k3'].values[0], 1.15 * cg['k3'].values[0])}
# Initialize the sampler
sampler = cm.UniformAPPDSampler(ranges=ranges, cal_width=cg['width'].values[0], cal_height=cg['height'].values[0],
reference=reference, temperature=5, appd_range_dicovery_samples=1000,
appd_range_bins=20, init_jobs=self.n_jobs,
width=output_width, height=output_height,
min_cropped_size=(int(output_width / 1.5), int(output_height / 1.5)))
sampler = cm.ParallelBufferedSampler(sampler=sampler, buffer_size=8, n_jobs=n_jobs_per_group)
self.samplers[cal_group] = sampler
def stop(self):
"""This should be ran when we want to stop generating data samples and before exiting the script.
It shuts off the background threads gracefully"""
for cal_group in self.samplers:
try:
self.samplers[cal_group].stop()
except:
pass