-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdd_analysis.py
754 lines (595 loc) · 32.1 KB
/
dd_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
"""Useful functions for analyzing results of disjoint-domain net runs"""
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # noqa
from scipy.cluster import hierarchy
from scipy.spatial import distance
from scipy.linalg import block_diag, svd, norm
from sklearn.manifold import MDS
from sklearn.decomposition import NMF
from statsmodels.regression.linear_model import OLS
from patsy import dmatrices
import ddnet
import disjoint_domain as dd
import util
import net_analysis
import problem_analysis as pa
report_titles = {
'loss': 'Loss',
'accuracy': 'Mean accuracy',
'weighted_acc': 'Mean accuracy (weighted)',
'weighted_acc_loose': 'Fraction of correct output units, class-rebalanced',
'weighted_acc_loose_indomain': 'Mean weighted sign accuracy (within domain)',
'etg_item': 'Epochs to learn new items',
'etg_context': 'Epochs to learn new contexts',
'etg_domain': 'Epochs to learn new domain',
'test_accuracy': 'Accuracy on novel item/context pairs',
'test_weighted_acc': 'Mean generalization accuracy (weighted)',
'test_weighted_acc_loose': 'Fraction of correct output units in test, class-rebalanced',
'test_weighted_acc_loose_indomain': 'Generalization sign accuracy (weighted, within domain)'
}
# make some util functions available under this namespace since I have a ton of code using it
auto_subplots = util.auto_subplots
make_plot_grid = util.make_plot_grid
outside_legend = util.outside_legend
add_colorbar = util.add_colorbar
def get_result_means(res_path, **result_mean_opts):
res = net_analysis.get_result_means(res_path, **result_mean_opts)
# expand any cluster info that was passed as a nullary function
for possible_fn in ddnet.callable_net_params:
if possible_fn in res['net_params'] and callable(res['net_params'][possible_fn]):
res['net_params'][possible_fn] = res['net_params'][possible_fn]()
# make aliases for "item_" snapshots if contexts were not used
if 'use_ctx' in res['net_params'] and not res['net_params']['use_ctx']:
for field in {'snaps', 'repr_corr', 'repr_dists'} & set(res.keys()):
snap_aliases = {'item_' + snap_type: val for snap_type, val in res[field].items() if 'item' not in snap_type}
res[field].update(snap_aliases)
# add full item and context repr dists
item_snaps = [res['snaps'][stype] for stype in ['item', 'item_hidden'] if stype in res['snaps']]
if len(item_snaps) > 0:
item_full_snaps = np.concatenate(item_snaps, axis=3)
res['repr_corr']['item_full'] = net_analysis.calc_mean_repr_corr(item_full_snaps, **result_mean_opts)
if 'compute_full_rdms' in result_mean_opts and result_mean_opts['compute_full_rdms']:
res['repr_dists']['item_full'] = net_analysis.calc_mean_repr_dists(item_full_snaps, **result_mean_opts)
ctx_snaps = [res['snaps'][stype] for stype in ['context', 'context_hidden'] if stype in res['snaps']]
if len(ctx_snaps) > 0:
ctx_full_snaps = np.concatenate(ctx_snaps, axis=3)
res['repr_corr']['context_full'] = net_analysis.calc_mean_repr_corr(ctx_full_snaps, **result_mean_opts)
if 'compute_full_rdms' in result_mean_opts and result_mean_opts['compute_full_rdms']:
res['repr_dists']['context_full'] = net_analysis.calc_mean_repr_dists(ctx_full_snaps, **result_mean_opts)
return res
def plot_report(ax, res, report_type, **kwargs):
if 'title' not in kwargs:
kwargs['title'] = report_titles[report_type]
net_analysis.plot_report(ax, res, report_type, **kwargs)
def plot_individual_reports(ax, res, report_type, **kwargs):
if 'title' not in kwargs:
kwargs['title'] = report_titles[report_type]
net_analysis.plot_individual_reports(ax, res, report_type, **kwargs)
def _get_names_for_snapshots(snap_type, **net_params):
"""Helper to retrieve input names depending on the type of snapshot"""
if 'item' in snap_type or 'attr' in snap_type:
names = dd.get_items(train_only=True, **net_params)[1]
elif 'context' in snap_type:
names = dd.get_contexts(train_only=True, **net_params)[1]
else:
raise ValueError('Unrecognized snapshot type')
return names
def plot_matrix_with_input_labels(ax, mat, input_type, res=None, **plot_matrix_args):
"""Helper to plot matrix with labels corresponding to items or contexts"""
if res is None:
net_params = {}
else:
net_params = res['net_params']
labels = _get_names_for_snapshots(input_type, **net_params)
return util.plot_matrix_with_labels(ax, mat, labels, **plot_matrix_args)
def plot_repr_corr(ax, res, snap_type, snap_ind, **kwargs):
"""
Plot an RSA matrix for the representation of items or contexts at a particular epoch
If 'rsa_mat' is provided, overrides the matrix to plot.
"""
input_names = _get_names_for_snapshots(snap_type, **res['net_params'])
return net_analysis.plot_repr_corr(ax, res, snap_type, snap_ind, input_names, **kwargs)
def plot_rdm(ax, res, snap_type, snap_ind, **kwargs):
input_names = _get_names_for_snapshots(snap_type, **res['net_params'])
return net_analysis.plot_rdm(ax, res, snap_type, snap_ind, input_names, **kwargs)
def get_item_loadings_svs_and_scores(res, snap_ind, run_ind, n_modes=None, layer='item_attr', center=False):
"""
Get SVD loading onto items of the empirical I/O matrix ('attr' snapshot) from a particular run.
weighted controls whether to weight each mode by its singular value.
n_modes allows returning only the first n modes (if not None)
Output is an n_items x n_modes matrix.
"""
mat = res['snaps'][layer][run_ind, snap_ind, ...]
if center:
mat = mat - np.mean(mat, axis=0)
u, s, vd = svd(mat, full_matrices=False)
if n_modes is not None:
u = u[:, :n_modes]
s = s[:n_modes]
vd = vd[:n_modes, :]
return u, s, vd
def plot_item_svd_loadings(ax, res, snap_ind, run_ind, weighted=True, n_modes=None, layer='item_attr', center=False,
title_addon=None, colorbar=True, tick_fontsize='x-small'):
"""
Plot the SVD loadings onto items of the empirical I/O matrix from a particular run.
"""
u, s = get_item_loadings_svs_and_scores(res, snap_ind, run_ind, n_modes=n_modes, layer=layer, center=center)[:2]
if weighted:
u = u @ np.diag(s)
image = plot_matrix_with_input_labels(ax, u, 'item', res, colorbar=colorbar,
label_cols=False, tick_fontsize=tick_fontsize)
# image = ax.imshow(u)
# add_colorbar(image)
ax.set_xlabel('SVD component #')
title = f'Epoch {res["snap_epochs"][snap_ind]}'
if title_addon is not None:
title += f'\n({title_addon})'
ax.set_title(title)
return image
def plot_item_svd_scores(ax, res, snap_ind, run_ind, weighted=False, n_modes=None, layer='item_attr', center=False,
title_addon=None, colorbar=True, tick_fontsize='x-small'):
"""
Plot the SVD loadings onto attributes of the empirical I/O matrix from a particular run.
"""
s, vd = get_item_loadings_svs_and_scores(res, snap_ind, run_ind, n_modes=n_modes, layer=layer, center=center)[1:]
if weighted:
vd = np.diag(s) @ vd
image = util.imshow_centered_bipolar(ax, vd, aspect='auto')
if colorbar:
add_colorbar(image)
for ticklabel in ax.get_xticklabels() + ax.get_yticklabels():
ticklabel.set_fontsize(tick_fontsize)
ax.set_ylabel('SVD component #')
ax.set_xlabel('Attribute')
title = f'Epoch {res["snap_epochs"][snap_ind]}'
if title_addon is not None:
title += f'\n({title_addon})'
ax.set_title(title)
return image
def get_item_nmf_loadings_and_scores(res, snap_ind, run_ind, n_modes=None, layer='item_attr'):
"""
Do an NMF decomposition of the empirical I/O matrix
"""
model = NMF(n_components=n_modes, solver='mu', max_iter=500)
mat = res['snaps'][layer][run_ind, snap_ind, ...]
# a little hacky but I think it's reasonable to get all elements positive...
mat_shifted = mat - np.min(mat)
u = model.fit_transform(mat_shifted)
vd = model.components_
# normalize so that *attribute* loadings (scores) have unit norm
norm_vec = norm(vd, axis=1)
inv_norm_vec = norm_vec
inv_norm_vec[np.flatnonzero(norm_vec)] **= -1
vd = vd * inv_norm_vec[:, np.newaxis]
u = u * norm_vec[np.newaxis, :]
return u, vd
def get_domain_mixing_score(res, snap_ind, run_ind, layer='item_attr'):
"""
A method of quantifying to what extent SVD modes of the empirical I/O matrix traverse
multiple domains.
- For each item loading, the L2 norm over each domain's items is computed.
- These individual domain norms are normalized to sum to 1
- The entropy of this "distribution" over domains is calculated
- The result is the sum of each mode's entropy, weighted by its singular value.
Update 10/1: this doesn't take into account mixing that can occur due to repeated singular values,
that doesn't correspond to shared information when the modes are summed together.
Use rank-based mixing score instead (rank compression)
"""
item_loadings, svs = get_item_loadings_svs_and_scores(res, snap_ind, run_ind, layer=layer)[:2]
weights = svs / sum(svs)
# get the domains
n_items = item_loadings.shape[0]
dom_len = dd.ITEMS_PER_DOMAIN
assert n_items % dom_len == 0, 'Huh? Odd number of items'
n_domains = n_items // dom_len
mode_entropies = np.zeros(len(svs))
for i, loading in enumerate(item_loadings.T):
domain_norms = np.array([
norm(loading[dom_len*d:dom_len*(d+1)]) for d in range(n_domains)
])
domain_norms /= sum(domain_norms)
mode_entropies[i] = -sum(domain_norms * np.log2(domain_norms))
return np.dot(weights, mode_entropies)
def plot_domain_mixing_scores(ax, res, epoch_range=None, layer='item_attr',
with_ci=True, label=None, **plot_params):
"""Make a plot of mean domain mixing scores over epochs"""
iomats = res['snaps'][layer] # runs x snaps x items x attrs
if epoch_range is None:
epoch_range = range(iomats.shape[1])
mixing_scores = np.array([
[
get_domain_mixing_score(res, snap_ind, run_ind, layer=layer)
for snap_ind in epoch_range
]
for run_ind in range(iomats.shape[0])
])
score_mean, score_ci = util.get_mean_and_ci(mixing_scores)
xaxis = [res['snap_epochs'][e] for e in epoch_range]
ax.plot(xaxis, score_mean, label=label, **plot_params)
if with_ci:
ax.fill_between(xaxis, *score_ci, alpha=0.3)
ax.set_xlabel('Epoch')
ax.set_ylabel('Weighted domain entropy (bits)')
ax.set_title(f'Domain mixing in I/O SVD loadings onto items ({layer} layer)')
def get_io_corr_rank(res, snap_ind, run_ind, layer='attr', center=True):
"""Find the rank of an I/O correlation matrix up to 99% of the power (according to squared singular values)"""
svs = get_item_loadings_svs_and_scores(res, snap_ind, run_ind, layer=layer, center=center)[1]
cum_sv_power = np.cumsum(svs**2 / sum(svs**2))
return np.sum(cum_sv_power <= 0.99) + 1
def plot_io_corr_ranks(ax, res, epoch_range=None, layer='item_attr', center=True,
with_ci=True, label=None, **plot_params):
iomats = res['snaps'][layer] # runs x snaps x items x attrs
if epoch_range is None:
epoch_range = range(iomats.shape[1])
corr_ranks = np.array([
[
get_io_corr_rank(res, snap_ind, run_ind, layer=layer, center=center)
for snap_ind in epoch_range
]
for run_ind in range(iomats.shape[0])
])
rank_mean, rank_ci = util.get_mean_and_ci(corr_ranks)
xaxis = [res['snap_epochs'][e] for e in epoch_range]
ax.plot(xaxis, rank_mean, label=label, **plot_params)
if with_ci:
ax.fill_between(xaxis, *rank_ci, alpha=0.3)
ax.set_xlabel('Epoch')
ax.set_ylabel('Rank to reach 99% power')
ax.set_title(f'Effective rank of I/O correlation matrix ({layer} layer)')
def get_full_vs_domain_rank_ratio(res, snap_ind, run_ind, layer, center=True):
"""
Evaluate shared information across domains by looking at the SVD rank (up to 99% power)
of the full I/O matrix vs. submatrices corresponding to individual domains.
This can be done for the full end-to-end I/O matrix (in which case the ratio is expected to converge
to the value it takes for the ground-truth I/O matrix) or for intermediate steps.
This is selected with the layer argument, which should be 'repr', 'hidden', or 'attr'.
"""
try:
mat = res['snaps'][layer][run_ind, snap_ind, ...]
if center:
mat = mat - np.mean(mat, axis=0)
except KeyError:
raise ValueError('Given results do not have I/O matrix information for the requested layer.')
full_mat_rank = get_io_corr_rank(res, snap_ind, run_ind, layer=layer, center=center)
n_domains = res['net_params']['n_domains']
sub_mats = np.split(mat, n_domains, axis=0) # splitting by items
sub_svs = [svd(sub_mat, full_matrices=False)[1] for sub_mat in sub_mats]
sub_cum_powers = [np.cumsum(svs**2 / sum(svs**2)) for svs in sub_svs]
sub_ranks = np.array([np.sum(cum_powers <= 0.99) + 1 for cum_powers in sub_cum_powers])
return full_mat_rank / np.mean(sub_ranks)
def get_rank_domain_mixing_score(res, snap_ind, run_ind, layer):
"""
Helper to remap mean domain rank ratio to a [0, 1] score of domain mixing
(If individual domain ranks are n_domains times less than rank of full matrix, there's no mixing;
if the two are equal, there's full mixing.)
"""
n_domains = res['net_params']['n_domains']
if n_domains < 2:
raise ValueError('Cannot score domain mixing with just one domain')
rank_ratio = get_full_vs_domain_rank_ratio(res, snap_ind, run_ind, layer, center=True)
svs = get_item_loadings_svs_and_scores(res, snap_ind, run_ind, layer=layer, center=True)[1]
total_var = sum((svs**2))
rank_score = n_domains - rank_ratio
rank_score /= (n_domains - 1)
rank_score *= total_var
return rank_score
def plot_rank_domain_mixing_scores(ax, res, epoch_range=None, layer='item_attr',
with_ci=True, label=None, **plot_params):
iomats = res['snaps'][layer] # runs x snaps x items x attrs
if epoch_range is None:
epoch_range = range(iomats.shape[1])
rank_mixing_scores = np.array([
[
get_rank_domain_mixing_score(res, snap_ind, run_ind, layer=layer)
for snap_ind in epoch_range
]
for run_ind in range(iomats.shape[0])
])
rank_mean, rank_ci = util.get_mean_and_ci(rank_mixing_scores)
xaxis = [res['snap_epochs'][e] for e in epoch_range]
ax.plot(xaxis, rank_mean, label=label, **plot_params)
if with_ci:
ax.fill_between(xaxis, *rank_ci, alpha=0.3)
ax.set_xlabel('Epoch')
ax.set_ylabel('Score of full vs. domain rank ratio')
ax.set_title(f'Domain mixing based on SVD rank ({layer} layer)')
def plot_repr_dendrogram(ax, res, snap_type, snap_ind, title_addon=None):
"""Similar to plot_rsa, but show dendrogram rather than RSA matrix"""
input_names = _get_names_for_snapshots(snap_type, **res['net_params'])
dists_compressed = distance.squareform(res['repr_dists'][snap_type]['snaps'][snap_ind])
z = hierarchy.linkage(dists_compressed, optimal_ordering=True)
hierarchy.dendrogram(z, labels=input_names, count_sort=True, ax=ax)
title = f'Epoch {res["snap_epochs"][snap_ind]}'
if title_addon is not None:
title += f' ({title_addon})'
ax.set_title(title)
def plot_repr_embedding(ax, res, snap_type, snap_ind, colors=None):
"""Similar to plot_rsa, but plot 2D embeddings of items or contexts using MDS"""
input_names = _get_names_for_snapshots(snap_type, **res['net_params'])
embedding = MDS(n_components=2, dissimilarity='precomputed')
reprs_embedded = embedding.fit_transform(res['repr_dists'][snap_type]['snaps'][snap_ind])
ax.scatter(*reprs_embedded.T, c=colors)
for pos, name in zip(reprs_embedded, input_names):
ax.annotate(name, pos)
def plot_repr_trajectories(res, snap_type, dims=2, title_label='', epochs_to_mark=()):
"""
Plot trajectories of each item or context representation over training
using MDS. Can plot in 3D by settings dims to 3.
Returns figure and axes.
"""
embedding = MDS(n_components=dims, dissimilarity='precomputed')
reprs_embedded = embedding.fit_transform(res['repr_dists'][snap_type]['all'])
# reshape and permute to aid plotting
n_snaps = len(res['snap_epochs'])
n_domains = res['net_params']['n_train_domains']
reprs_embedded = reprs_embedded.reshape((n_snaps, n_domains, -1, dims))
reprs_embedded = reprs_embedded.transpose((1, 2, 3, 0))
fig = plt.figure()
ax = fig.add_subplot(111, projection=('3d' if dims == 3 else None))
input_names = _get_names_for_snapshots(snap_type, **res['net_params'])
if 'item' in snap_type:
if 'item_clusters' in res['net_params']:
input_groups = dd.item_group(clusters=res['net_params']['item_clusters'])
elif 'cluster_info' in res['net_params']:
input_groups = dd.item_group(clusters=res['net_params']['cluster_info'])
else:
input_groups = dd.item_group()
elif 'context' in snap_type:
# No "groups," but use symbols for individual contexts (per domain) instead.
input_groups = np.arange(4)
else:
raise ValueError('Unrecognized snapshot type')
input_names = np.array(input_names).reshape((n_domains, -1))
colors = dd.get_domain_colors()
markers = ['o', 's', '*', '^']
for dom_reprs, dom_labels, color in zip(reprs_embedded, input_names, colors):
for reprs, label, group in zip(dom_reprs, dom_labels, input_groups):
linestyle = markers[group] + '-'
ax.plot(*reprs, linestyle, label=label, markersize=4, color=color, linewidth=0.5)
# add start and end markers on top of everything else
inds_to_mark = []
if len(epochs_to_mark) > 0:
snap_epochs = res['snap_epochs']
for epoch in epochs_to_mark:
if epoch in snap_epochs:
inds_to_mark.append(snap_epochs.index(epoch))
for dom_reprs, dom_labels, color in zip(reprs_embedded, input_names, colors):
for reprs, label, group in zip(dom_reprs, dom_labels, input_groups):
marker = markers[group]
def mark_epoch(epoch_ind, bordercolor):
ax.plot(*reprs[:, epoch_ind], marker, markersize=8, color=bordercolor)
ax.plot(*reprs[:, epoch_ind], marker, markersize=5, color=color)
mark_epoch(0, 'g')
mark_epoch(-1, 'r')
for ind in inds_to_mark:
mark_epoch(ind, 'k')
ax.set_title(f'{title_label} {snap_type} representations over training\n' +
'color = domain, marker = type within domain')
return fig, ax
def plot_hl_input_pattern_correlations(ax, res, run_num, snap_index, title_label=''):
"""
Plots a matrix of how strongly the weights of each hidden layer neuron
onto the attribute layer correlate with the correct output pattern for
each item/context pair.
"""
with np.load(res['path'], allow_pickle=True) as resfile:
if 'parameters' not in res or 'ys' not in resfile:
raise RuntimeError("Selected results file doesn't have needed data.")
ha_weights = resfile['parameters'].item()['hidden_to_attr.weight'][run_num, snap_index, ...]
ys = res['ys'][run_num]
ys_norm = ys - np.mean(ys, axis=1, keepdims=True)
ys_norm /= np.std(ys_norm, axis=1, keepdims=True)
weights_norm = ha_weights - np.mean(ha_weights, axis=0, keepdims=True)
weights_norm /= np.std(weights_norm, axis=0, keepdims=True)
corrs = ys_norm @ weights_norm / ys_norm.shape[1]
epoch = res['snap_epochs'][snap_index]
# get labels for item/context combinations
_, item_names = dd.get_items(**res['net_params'])
_, ctx_names = dd.get_contexts(**res['net_params'])
n_domains = res['net_params']['n_domains']
items_per_domain = np.split(np.array(item_names), n_domains)
ctx_per_domain = np.split(np.array(ctx_names), n_domains)
input_names = []
for items, ctx in zip(items_per_domain, ctx_per_domain):
input_names.append([f'{iname}/{cname}' for cname in ctx for iname in items])
input_names = np.concatenate(input_names)
image = util.imshow_centered_bipolar(ax, corrs, interpolation='nearest')
ax.set_yticks(range(len(input_names)))
ax.set_yticklabels(input_names)
ax.set_xticks([])
ax.set_xlabel('Hidden layer neurons')
ax.set_title(f'{title_label} correlation of hidden-to-attribute weights\n' +
f'with input attributes (run {run_num+1}, epoch {epoch})')
add_colorbar(image)
return image
def make_ortho_item_rsa_models(n_domains, ctx_per_domain=4, attrs_per_context=50, clusters='4-2-2', **_extra):
"""
Makes a set of model RDMs that have unit norm and are pairwise orthogonal, and
are hopefully useful for interpreting item representations in the DDNet.
All models have zeros along the diagonal.
- 'uniformity' - Constant term for all distinct item pairs. All other models sum to 0.
- 'attribute_similarity' - Centered distance between item attribute vectors within each domain
(Fig. R3)
- 'same_vs_different_domain' - Contrasts mean distance between domains vs. within domain
- 'cross_domain_group_match' - Contrasts distance between same-group vs. different-group
cross-domain pairs (regrdless of any within-domain distances).
Considers just "circle" and "non-circle" groups for simplicity.
Returns the set of RDMs as a dict.
"""
# spread
n_items = n_domains * dd.ITEMS_PER_DOMAIN
#models = {'spread': util.norm_rdm(np.ones((n_items, n_items)))}
models = {'uniformity': np.full((n_items, n_items), 1 / n_items**2)}
# in-domain attribute distance
item_attr_rdm = dd.get_item_attribute_rdm(ctx_per_domain, attrs_per_context)
item_attr_model_1domain = util.center_and_norm_rdm(item_attr_rdm) / np.sqrt(n_domains)
models['attribute_similarity'] = block_diag(*[item_attr_model_1domain for _ in range(n_domains)])
# cross vs. within-domain
is_domain_eq = block_diag(*[np.ones((dd.ITEMS_PER_DOMAIN, dd.ITEMS_PER_DOMAIN), dtype=bool)
for _ in range(n_domains)])
nz_where_domain_ne = 1 - is_domain_eq
models['same_vs_different_domain'] = util.center_and_norm_rdm(nz_where_domain_ne)
# cross-domain group
is_circle = np.equal(dd.item_group(clusters=clusters), 0)
is_diff_group = is_circle[:, np.newaxis] != is_circle[np.newaxis, :]
diff_group_centered = is_diff_group - np.mean(is_diff_group)
diff_group_tiled = np.tile(diff_group_centered, (n_domains, n_domains))
diff_group_tiled[is_domain_eq] = 0 # make block diagonal zero
models['cross_domain_group_match'] = util.norm_rdm(diff_group_tiled)
# # combination of attribute distance and cross-domain group
# tiled_item_attr = np.tile(item_attr_model_1domain, (n_domains, n_domains))
# models['attr_with_cross_domain'] = util.center_and_norm_rdm(models['attribute_similarity'] + (0.5 * nz_where_domain_ne) * tiled_item_attr)
return models
def make_ortho_context_rsa_models(n_domains, ctx_per_domain=4, **_extra):
"""
Makes a set of model RDMs for context representations. Similar to make_ortho_item_rsa_models,
but with only the 'uniformity' and 'cross_vs_in_domain' types.
"""
# models = {'spread': util.norm_rdm(1 - np.eye(n_domains * ctx_per_domain))}
n_contexts = n_domains * ctx_per_domain
models = {'uniformity': np.full((n_contexts, n_contexts), 1 / n_contexts**2)}
# cross vs. within-domain
is_domain_eq = block_diag(*[np.ones((ctx_per_domain, ctx_per_domain), dtype=bool)
for _ in range(n_domains)])
nz_where_domain_ne = 1 - is_domain_eq
models['same_vs_different_domain'] = util.center_and_norm_rdm(nz_where_domain_ne)
return models
def test_model_validity(n_domains=4):
"""Make sure all item and context model RDMs are pairwise orthogonal with unit norm"""
item_models = make_ortho_item_rsa_models(n_domains)
item_model_mat = np.stack([model.ravel() for model in item_models.values()], axis=1)
ctx_models = make_ortho_context_rsa_models(n_domains)
ctx_model_mat = np.stack([model.ravel() for model in ctx_models.values()], axis=1)
if not np.allclose(item_model_mat.T @ item_model_mat, np.eye(len(item_models))):
print('Warning: item model RDMs are not orthogonal.')
else:
print('Item model RDMs are orthogonal.')
if not np.allclose(np.linalg.norm(item_model_mat, axis=0), np.ones(len(item_models))):
print('Warning: item model RDMs do not all have unit norm.')
else:
print('Item model RDMs all have unit norm.')
if not np.allclose(ctx_model_mat.T @ ctx_model_mat, np.eye(len(ctx_models))):
print('Warning: context model RDMs are not orthogonal.')
else:
print('Context model RDMs are orthogonal.')
if not np.allclose(np.linalg.norm(ctx_model_mat, axis=0), np.ones(len(ctx_models))):
print('Warning: context model RDMs do not all have unit norm.')
else:
print('Context model RMDs all have unit norm.')
def get_rdm_projections(res, snap_type='item', models=None):
"""
Wraps get_rdm_projections in net_analysis.py, using the orthogonal RSA models specified above by default.
"""
if models is None:
if 'item' in snap_type:
models = make_ortho_item_rsa_models(**res['net_params'])
elif 'context' in snap_type:
models = make_ortho_context_rsa_models(**res['net_params'])
else:
raise ValueError(f'Snapshot type {snap_type} not recognized')
return net_analysis.get_rdm_projections(res, snap_type, models)
def plot_rdm_projections(res, snap_type, axs, label=None, **plot_params):
"""
Plot time series of item or context RDM projections onto given axes, with 95% CI.
model_types should be a list of the same size as axs.
"""
# get all the projections to start
projections = get_rdm_projections(res, snap_type)
model_types = projections.keys()
axs = axs.ravel()
if len(axs) != len(model_types):
raise ValueError(f'Wrong number of axes given (expected {len(model_types)})')
layer = 'hidden layer' if 'hidden' in snap_type else 'all layers' if 'full' in snap_type else 'repr layer'
input_type = 'item' if 'item' in snap_type else 'context'
for ax, mtype in zip(axs, model_types):
try:
mean, (lower, upper) = util.get_mean_and_ci(projections[mtype])
except KeyError:
raise ValueError(f'Model type {mtype} not defined for {snap_type} snapshots.')
ax.plot(res['snap_epochs'], mean, label=label, **plot_params)
ax.fill_between(res['snap_epochs'], lower, upper, **{'alpha': 0.3, **plot_params})
ax.set_title(f'Projection of {input_type} RDMs in {layer} onto {mtype} model')
def make_dict_for_regression(res_array):
"""
Make a dict of regressors and response variables to use to test effects of things
like RDM projections on things like model generalization accuracy.
Can be used as the 'data' parameter to patsy.dmatrices.
Uses all results in res_array concatenated together in time.
**Assumes snapshot and report epochs are the same, which is true for pretty much all my runs**
"""
run_dicts = []
runs_with_column = {} # to figure out which columns are in each run
for res in res_array:
# start with rdm projections (with full hidden layer state)
run_dict = {('item_' + key): proj.ravel() for key, proj in get_rdm_projections(res, snap_type='item_full').items()}
run_dict.update({('ctx_' + key): proj.ravel() for key, proj in get_rdm_projections(res, snap_type='context_full').items()})
# add reports
with np.load(res['path'], allow_pickle=True) as resfile:
report_dict = resfile['reports'].item()
run_dict.update({key: report.ravel() for key, report in report_dict.items() if 'etg' not in key})
for key in run_dict:
if key in runs_with_column:
runs_with_column[key] += 1
else:
runs_with_column[key] = 1
run_dicts.append(run_dict)
# concatenate all runs across time
shared_keys = [key for key, count in runs_with_column.items() if count == len(res_array)]
return {key: np.concatenate([run_dict[key] for run_dict in run_dicts]) for key in shared_keys}
def fit_linear_model(formula, data_dict):
"""
Creates a statsmodel OLS model for the R-style (patsy) formula given the
variables in data_dict (created with make_dict_for_regression).
Returns the statsmodels results object.
"""
y, x = dmatrices(formula, data=data_dict, return_type='dataframe')
model = OLS(y, x)
return model.fit()
def get_attr_freq_dist_mats(res, train_items=slice(None), normalize=False):
"""
Returns a matrix for each individual run indicating how much the mean # of
attributes shared with other items differs for each item pair
"""
item_mat = dd.make_io_mats(**res['net_params'])[0][:, train_items]
attr_mats = res['ys']
attr_freq_dist_mats = [pa.get_attr_freq_dist_mat(item_mat, attr_mat) for attr_mat in attr_mats]
if normalize:
attr_freq_dist_mats = [util.center_and_norm_rdm(mat) for mat in attr_freq_dist_mats]
return np.stack(attr_freq_dist_mats)
def get_svd_dist_mats(res, train_items=slice(None), modes_to_use=slice(None), normalize=False, n_domains=None):
"""
Returns a matrix for each individual run indicating the difference between each pair of items
as a cityblock distance of their SVD loadings. This is supposed to capture info abount hierarchical position.
"""
ys = res['ys']
item_mat = dd.make_io_mats(**res['net_params'])[0][:, train_items]
if n_domains is None:
n_domains = item_mat.shape[1] // dd.ITEMS_PER_DOMAIN
svd_dist_mats = [pa.get_contextfree_item_svd_dist(item_mat, y, n_domains, modes_to_use) for y in ys]
if normalize:
return np.stack([util.center_and_norm_rdm(mat) for mat in svd_dist_mats])
return np.stack(svd_dist_mats)
def plot_attr_freq_dist_correlation(ax, res, snap_type='item_full', train_items=slice(None),
label=None, **plot_params):
"""
Plot the correlation between item snapshot distances at each epoch and the absolute
differences in mean # of attributes shared with other items. This seems to be an
important factor for the item RDMs early in training.
"""
snap_dists = res['repr_dists'][snap_type]['snaps_each']
corrs = np.empty(snap_dists.shape[:2])
attr_freq_dists = get_attr_freq_dist_mats(res, train_items=train_items)
# iterate over runs
for run_dists, attr_freq_dist, corr_vec in zip(snap_dists, attr_freq_dists, corrs):
# correlate condensed distances to avoid diagonal (could be varying offset on off-diagonal entries)
attr_freq_dist_cd = distance.squareform(attr_freq_dist)
item_repr_dists_cd = [distance.squareform(dist_mat[train_items, train_items]) for dist_mat in run_dists]
corr_vec[:] = [np.corrcoef(attr_freq_dist_cd, idist)[0, 1] for idist in item_repr_dists_cd]
# now plot, with confidence interval
mean, ci = util.get_mean_and_ci(corrs)
ax.plot(res['snap_epochs'], mean, label=label, **plot_params)
ax.fill_between(res['snap_epochs'], *ci, alpha=0.3)
ax.set_xlabel('Epoch')
ax.set_ylabel('Correlation (r)')
ax.set_title('Correlation of item representation distance with\ndifference in attribute frequency')