-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdwa.py
371 lines (286 loc) · 10.6 KB
/
dwa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import numpy as np
from scipy.integrate import solve_ivp
from animation import Animation_robot
# def min_max_normalize(data):
# data = np.array(data)
# max_val = data.max()
# min_val = data.min()
# diff = max_val - min_val
# eps = 1e-7
# if abs(diff) < eps:
# data = np.zeros(len(data))
# else:
# data = (data - min_val) / diff
# return data
# 角度補正用
def angle_range_corrector(angle):
if angle > np.pi:
while angle > np.pi:
angle -= 2 * np.pi
elif angle < -np.pi:
while angle < -np.pi:
angle += 2 * np.pi
return angle
# ルール
# x, y, thは基本的に今のstate
# g_ はgoal
# traj_ は過去の軌跡
# 単位は,角度はrad,位置はm
# 二輪モデルなので入力は速度と角速度
# 速度、角速度一定の時の経路
class Path:
def __init__(self, x, y, th, u_th, u_v) -> None:
self.xs = x
self.ys = y
self.ths = th
self.u_v = u_v
self.u_th = u_th
class Obstacle:
def __init__(self, x, y, size) -> None:
self.x = x
self.y = y
self.size = size
class TwoWheeledRobot:
def __init__(self, init_x, init_y, init_th) -> None:
self.x = init_x
self.y = init_y
self.th = init_th
self.u_v = 0.0
self.u_th = 0.0
self.traj_x = [init_x]
self.traj_y = [init_y]
self.traj_th = [init_th]
self.traj_u_v = [0.0]
self.traj_u_th = [0.0]
# xi: [x, y, theta]
# u:[u_th, u_v]
@staticmethod
def state_equation(xi, u):
dxi = np.empty(3)
dxi[0] = u[1] * np.cos(xi[2])
dxi[1] = u[1] * np.sin(xi[2])
dxi[2] = u[0]
return dxi
def update_state(self, u_th, u_v, dt):
self.u_th = u_th
self.u_v = u_v
# rk45等で数値積分する
xi_init = np.array([self.x, self.y, self.th])
u = np.array([u_th, u_v])
sol = solve_ivp(
lambda t, xi: TwoWheeledRobot.state_equation(xi, u), [0, dt], xi_init
)
integrated = sol.y[:, -1]
next_x = integrated[0]
next_y = integrated[1]
next_th = integrated[2]
self.traj_x.append(next_x)
self.traj_y.append(next_y)
self.traj_th.append(next_th)
self.x = next_x
self.y = next_y
self.th = next_th
return self.x, self.y, self.th
class CoarseSimulator:
def __init__(self) -> None:
self.max_acc = 1.0 # m/s^2
self.max_ang_acc = np.deg2rad(100) # rad/s^2
self.lim_max_vel = 1.6 # m/s
self.lim_min_vel = 0.0
self.lim_max_ang_vel = np.pi # deg/s
self.lim_min_ang_vel = -self.lim_max_ang_vel
def predict_state(self, ang_vel, vel, x, y, th, dt, pre_step):
next_xs = []
next_ys = []
next_ths = []
for _ in range(pre_step):
x = vel * np.cos(th) * dt + x
y = vel * np.sin(th) * dt + y
th = ang_vel * dt + th
next_xs.append(x)
next_ys.append(y)
next_ths.append(th)
return next_xs, next_ys, next_ths
class ConstGoal:
def __init__(self) -> None:
self.traj_g_x = []
self.traj_g_y = []
def calc_goal(self, time_step):
# g_x = g_y = 10.0
if time_step <= 100:
g_x = 10.0
g_y = 10.0
else:
g_x = -10.0
g_y = -10.0
self.traj_g_x.append(g_x)
self.traj_g_y.append(g_y)
return g_x, g_y
class DWA:
def __init__(self, samplingtime) -> None:
self.simu_robot = CoarseSimulator()
self.pre_time = 3
self.pre_step = 30
self.delta_vel = 0.02
self.delta_ang_vel = 0.02
self.samplingtime = samplingtime
self.weight_angle = 0.04
self.weight_vel = 0.2
self.weight_obs = 0.1
# 近傍とみなす距離
area_dis_to_obs = 5
self.area_dis_to_obs_sqrd = area_dis_to_obs**2
# スコアの最大値
score_obstacle = 2
self.score_obstacle_sqrd = score_obstacle**2
self.traj_paths = []
self.traj_opt = []
def calc_input(self, g_x, g_y, state, obstacles):
paths = self._make_path(state)
opt_path = self._eval_path(paths, g_x, g_y, state, obstacles)
self.traj_opt.append(opt_path)
return paths, opt_path
def _make_path(self, state):
min_ang_vel, max_ang_vel, min_vel, max_vel = self._calc_range_vels(state)
paths = []
for ang_vel in np.arange(min_ang_vel, max_ang_vel, self.delta_ang_vel):
for vel in np.arange(min_vel, max_vel, self.delta_vel):
next_x, next_y, next_th = self.simu_robot.predict_state(
ang_vel,
vel,
state.x,
state.y,
state.th,
self.samplingtime,
self.pre_step,
)
paths.append(Path(next_x, next_y, next_th, ang_vel, vel))
self.traj_paths.append(paths)
return paths
def _calc_range_vels(self, state):
range_ang_vel = self.samplingtime * self.simu_robot.max_ang_acc
min_ang_vel = max(state.u_th - range_ang_vel, self.simu_robot.lim_min_ang_vel)
max_ang_vel = min(state.u_th + range_ang_vel, self.simu_robot.lim_max_ang_vel)
range_vel = self.samplingtime * self.simu_robot.max_acc
min_vel = max(state.u_v - range_vel, self.simu_robot.lim_min_vel)
max_vel = min(state.u_v + range_vel, self.simu_robot.lim_max_vel)
return min_ang_vel, max_ang_vel, min_vel, max_vel
def _eval_path(self, paths, g_x, g_y, state, obstacles):
neighbor_obs = self._calc_neighbor_obs(state, obstacles)
score_heading_angles = []
score_heading_vels = []
score_obstacles = []
for path in paths:
score_obs = self._calc_obstacles_score(path, neighbor_obs)
if score_obs == -float("inf"):
continue
score_heading_angles.append(self._calc_heading_angle_score(path, g_x, g_y))
score_heading_vels.append(self._calc_heading_vel_score(path))
score_obstacles.append(score_obs)
if len(score_heading_angles) == 0:
raise RuntimeError("All paths cannot avoid obstacles")
# パラメータチューニングがうまくいかなかったため、正規化していない
score_heading_angles_np = np.array(score_heading_angles)
score_heading_vels_np = np.array(score_heading_vels)
score_obstacles_np = np.array(score_obstacles)
scores = (
self.weight_angle * score_heading_angles_np
+ self.weight_vel * score_heading_vels_np
+ self.weight_obs * score_obstacles_np
)
return paths[scores.argmax()]
def _calc_heading_angle_score(self, path, g_x, g_y):
last_x = path.xs[-1]
last_y = path.ys[-1]
last_th = path.ths[-1]
angle_to_goal = np.arctan2(g_y - last_y, g_x - last_x)
score_angle = angle_to_goal - last_th
# ぐるぐる防止
score_angle = abs(angle_range_corrector(score_angle))
# 最大と最小をひっくり返す
score_angle = np.pi - score_angle
return score_angle
def _calc_heading_vel_score(self, path):
return path.u_v
def _calc_neighbor_obs(self, state, obstacles):
neighbor_obs = []
for obs in obstacles:
temp_dis_to_obs = (state.x - obs.x) ** 2 + (state.y - obs.y) ** 2
if temp_dis_to_obs < self.area_dis_to_obs_sqrd:
neighbor_obs.append(obs)
return neighbor_obs
def _calc_obstacles_score(self, path, neighbor_obs):
score_obstacle_sqrd = self.score_obstacle_sqrd
for (path_x, path_y) in zip(path.xs, path.ys):
for obs in neighbor_obs:
temp_dis_to_obs = (path_x - obs.x) ** 2 + (path_y - obs.y) ** 2
if temp_dis_to_obs < score_obstacle_sqrd:
score_obstacle_sqrd = temp_dis_to_obs
if temp_dis_to_obs < obs.size + 0.75: # マージン
return -float("inf")
return np.sqrt(score_obstacle_sqrd)
class MainController:
def __init__(self) -> None:
self.samplingtime = 0.1
self.robot = TwoWheeledRobot(0.0, 0.0, 0)
self.goal_maker = ConstGoal()
self.planner = DWA(self.samplingtime)
self.obstacles = [
Obstacle(4, 1, 0.25),
Obstacle(0, 4.5, 0.25),
# Obstacle(3, 4.5, 0.25),
# Obstacle(5, 3.5, 0.25),
Obstacle(7.5, 9.0, 0.25),
]
# self.obstacles = []
# for _ in range(10):
# x = np.random.randint(-5, 5)
# y = np.random.randint(-5, 5)
# size = 0.25
# self.obstacles.append(Obstacle(x, y, size))
def run(self):
time_step = 0
goal_th = 0.5
goal_th_sqrd = goal_th**2
max_timestep = 500
while True:
g_x, g_y = self.goal_maker.calc_goal(time_step)
_, opt_path = self.planner.calc_input(g_x, g_y, self.robot, self.obstacles)
u_th = opt_path.u_th
u_v = opt_path.u_v
self.robot.update_state(u_th, u_v, self.samplingtime)
dist_to_goal = (g_x - self.robot.x) ** 2 + (g_y - self.robot.y) ** 2
if dist_to_goal < goal_th_sqrd:
break
time_step += 1
if time_step >= max_timestep:
break
return (
self.robot.traj_x,
self.robot.traj_y,
self.robot.traj_th,
self.goal_maker.traj_g_x,
self.goal_maker.traj_g_y,
self.planner.traj_paths,
self.planner.traj_opt,
self.obstacles,
)
def main():
animation = Animation_robot()
animation.fig_set()
controller = MainController()
(
traj_x,
traj_y,
traj_th,
traj_g_x,
traj_g_y,
traj_paths,
traj_opt,
obstacles,
) = controller.run()
animation.func_anim_plot(
traj_x, traj_y, traj_th, traj_paths, traj_g_x, traj_g_y, traj_opt, obstacles
)
if __name__ == "__main__":
main()