forked from r4ds/bookclub-r4ds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05-data_transformation.Rmd
861 lines (629 loc) · 19.2 KB
/
05-data_transformation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
# Data transformation
**Learning objectives:**
- **Pick out rows** of a data frame with the **`dplyr::filter()`** function.
- **Sort rows** of a data frame with **`dplyr::arrange()`**.
- **Pick out columns** of a data frame with **`dplyr::select()`**.
- **Modify columns** of a data frame with **`dplyr::mutate()`**.
- **Group rows** of a data frame with **`dplyr::group()`**.
- **Apply functions to columns** of a (grouped) data frame with **`dplyr::summarize()`**.
- **Streamline data transformations** with the **pipe** operator (`%>%`).
## Introduction
### Prerequisites
dplyr is a package that provides functions to manipulate data frames. Data frame consists of columns (variables) and rows (observations).
dplyr is part of the tidyverse. You can install and load the all the packages from tidyverse (ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, forcats)
```{r 05-01, eval=FALSE}
install.packages("tidyverse")
```
```{r 05-02}
library(tidyverse)
```
Or just install and load dplyr.
```{r 05-03, eval=FALSE}
install.packages("dplyr")
```
```{r 05-04}
library(dplyr)
```
### nycflights13
The data set `nycflights13` contains data about flights that departed New York City in 2013.
```{r 05-05, eval=FALSE}
install.packages("nycflights13")
```
```{r 05-06}
library(nycflights13)
```
When you use data set for the first time, it's good practice to quickly browse the data to check if you want to use the data.
To view the flights data in the R console. .
```{r 05-07}
flights
```
To view the flights data in a spreadsheet-like viewer.
```{r 05-08, eval=FALSE}
View(flights)
```
Use `?flights` to open the help viewer to get info about all the variables.
```{r 05-09, eval=FALSE}
?flights
```
Check the size of the flights data frame using `nrow()`, `ncol()`, `length()`, and `dim()`.
```{r 05-10, eval=FALSE}
# number of rows
nrow(flights)
# [1] 336776
# number of columns
ncol(flights)
# [1] 19
# number of columns
length(flights)
# [1] 19
# number of rows and columns
dim(flights)
# [1] 336776 19
```
get the column names with `colnames()`
```{r 05-11}
colnames(flights)
```
## Comparisons and logical operators
### Comparisons
- `>` greater than
- `>=` greater than or equal
- `<` less than
- `<=` less than or equal
- `==` equal
- `!=` not equal
In math we use `=` for equality. In programming we use `==` for equality, and `=` for assignment.
compare numbers
```{r 05-12, eval=FALSE}
1 > 2
# [1] FALSE
1 >= 2
# [1] FALSE
1 < 2
# [1] TRUE
1 <= 2
# [1] TRUE
1 == 2
# [1] FALSE
1 != 2
# [1] TRUE
```
compare characters
```{r 05-13, eval=FALSE}
'a' > 'b'
# [1] FALSE
'a' >= 'b'
# [1] FALSE
'a' < 'b'
# [1] TRUE
'a' <= 'b'
# [1] TRUE
'a' == 'b'
# [1] FALSE
'a' != 'b'
# [1] TRUE
```
Case matters when comparing characters. For English, lowercase letters are less than uppercase letters.
```{r 05-14, eval=FALSE}
'a' > 'A'
# [1] FALSE
'a' >= 'A'
# [1] FALSE
'a' < 'A'
# [1] TRUE
'a' <= 'A'
# [1] TRUE
'a' == 'A'
# [1] FALSE
'a' != 'A'
# [1] TRUE
```
We can change case when comparing characters.
`tolower()` will change characters to lower case. `toupper()` will change characters to upper case.
```{r 05-15, eval=FALSE}
tolower('A')
# [1] "a"
toupper('a')
# [1] "A"
```
```{r 05-16, eval=FALSE}
'a' == tolower('A')
# [1] TRUE
toupper('a') == 'A'
# [1] TRUE
```
### Logical operators
`&` and; all expressions must be true in order to return true
```{r 05-17, eval=FALSE}
TRUE & TRUE
# [1] TRUE
TRUE & FALSE
# [1] FALSE
```
`|` or; one or more expressions must be true in order to return true; `|` is the key above the return key, not lowercase letter l.
```{r 05-18, eval=FALSE}
TRUE | TRUE
# [1] TRUE
TRUE | FALSE
# [1] TRUE
```
`!` not; negate the expression
```{r 05-19, eval=FALSE}
!TRUE
# [1] FALSE
!FALSE
# [1] TRUE
!!TRUE
# [1] TRUE
```
assign objects
```{r 05-20}
a <- 1
b <- 5
```
compare object and numbers
```{r 05-21, eval=FALSE}
a < 3
# [1] TRUE
a > 3
# [1] FALSE
a == 3
# [1] FALSE
a != 3
# [1] TRUE
```
compare objects
```{r 05-22, eval=FALSE}
a < b
# [1] TRUE
a > b
# [1] FALSE
a == b
# [1] FALSE
a != b
# [1] TRUE
```
comparison and logical operators
```{r 05-23, eval=FALSE}
a > 3
# [1] FALSE
b > 3
# [1] TRUE
a > 3 & b > 3
# [1] FALSE
a > 3 | b > 3
# [1] TRUE
!(a == b)
# [1] TRUE
```
## Filter rows with filter()
`filter()` allows you to pick out certain rows (observations) . `filter()` picks the rows which evaluates to TRUE for all criteria.
The first argument to `filter()` is a data frame, the subsequent arguments are the expressions.
Combine comparisons and logical operators on the columns to select rows.
```{r 05-24}
# number of rows and columns
dim(flights)
```
```{r 05-25}
# get the column names
colnames(flights)
```
```{r 05-26}
# select flights from November
filter(flights, month == 11)
```
`A tibble: 27,268 × 19` tells you 27,268 rows match the criteria
```{r 05-27}
# select flights from December
filter(flights, month == 12)
```
```{r 05-28}
# select flights not from December (e.g. January to November)
filter(flights, month != 12)
```
```{r 05-29}
# select flights from November or December
filter(flights, month == 11 | month == 12)
```
`&` (and) vs `|` (or)
```{r 05-30}
# select flights from November or from 1st day of any month
filter(flights, month == 11 | day == 1)
```
```{r 05-31}
# select flights from November 1st
filter(flights, month == 11 & day == 1)
```
If you provide multiple comma-separated expressions, dplyr will automatically use `&` to combine the expressions.
```{r 05-32, eval=FALSE}
# both will select flights from November 1st
filter(flights, month == 11 & day == 1)
filter(flights, month == 11, day == 1)
```
dplyr functions do not change the original data. To save the results from a function, you need to assign the results to a object.
```{r 05-33, eval=FALSE}
nov1 <- filter(flights, month == 11, day == 1)
nrow(nov1)
## [1] 986
nrow(flights)
## [1] 336776
```
### Missing values
Often times, rows will not have data for certain columns. In spreadsheets, csv, tsv, the cells will be blank. In R data frames, the missing values are represented as `NA` (not available).
Operations with `NA` will return `NA`.
```{r 05-34, eval=FALSE}
NA > 5
# [1] NA
10 == NA
# [1] NA
NA + 10
# [1] NA
NA / 2
# [1] NA
NA == NA
# [1] NA
```
To check if value is missing use `is.na()`
```{r 05-35, eval=FALSE}
is.na(NA)
# [1] TRUE
```
By default, `filter()` excludes `NA` values. To include `NA` values, you must add an expression.
tibble is the tidyverse version of a data frame. tibble haves some extra functions that normal data frames do not have.
```{r 05-36}
# create a tibble with a column named "x", with 3 values
df <- tibble(x = c(1, NA, 3))
df
```
```{r 05-37}
# select rows with values greater than 1
filter(df, x > 1)
```
```{r 05-38}
# select rows with NA or values greater than 1
filter(df, is.na(x) | x > 1)
```
## Arrange rows with arrange()
`arrange()` changes the order of the rows. The first argument to `arrange()` is a data frame, the subsequent arguments are columns names are expression used to sort the rows.
Ascending (small to big) is the default order.
Use `desc()` for descending order (big to small).
```{r 05-39}
# sort flights by depature delay using ascending order
arrange(flights, dep_delay)
```
```{r 05-40}
# sort flights by depature delay using descending order.
arrange(flights, desc(dep_delay))
```
sort by multiple columns
```{r 05-41}
# sort flights by year, month, and day using ascending order
arrange(flights, year, month, day)
```
`arrange()` puts `NA` values at the end.
```{r 05-42}
# create tibble with 3 values
df <- tibble(x = c(1, NA, 3))
# sort puts NA at the end
arrange(df, x)
```
## Select columns with select()
`select()` lets you pick which columns (variables) to use. The first argument to `select()` is a data frame, the subsequent arguments are columns to use.
```{r 05-43}
# colnames() retrieves the column names
colnames(flights)
```
the order you list the columns will determine the order of the columns returned by `select()`.
```{r 05-44}
# select year, month, and day columns.
select(flights, year, month, day)
```
```{r 05-45}
# use ':' to select columns from year to day (inclusive).
select(flights, year:day)
```
```{r 05-46}
# use '-' to select columns except from year to day (inclusive).
select(flights, -(year:day))
```
helper functions for `select()`
`starts_with()`
```{r 05-47}
# select columns that start with "dep"
select(flights, starts_with("dep"))
```
`ends_with()`
```{r 05-48}
# select columns that end with "delay"
select(flights, ends_with("delay"))
```
`contains()`
```{r 05-49}
# select columns that contain "dep"
select(flights, contains("dep"))
```
`matches()`
```{r 05-50}
# select columns that matches regular expression.
# "^a(.)r" means it starts with a, has any character, and then r.
select(flights, matches("^a(.)r"))
```
`num_range()`
```{r 05-51}
# create tibble with columns x1, x2, x3, x4
df <- tibble(x1 = c(1, 2), x2 = c(2, 3), x3 = c(4, 5), x4 = c(6, 7))
# select column that matches x1, x2 and x3
select(df, num_range("x", 1:3))
```
`rename()` changes the column names. `rename(data_frame, new_name = old_name)`
```{r 05-52}
# rename the column dep_time to departure_time
rename(flights, departure_time = dep_time)
```
use `select()` and `everything()` to move some columns to start of the dataframe
```{r 05-53}
# rearrange columns to time_hour, air_time, rest of the columns
select(flights, time_hour, air_time, everything())
```
## Add new variables with mutate()
`mutate()` adds new columns based on values from existing columns. Data frame includes existing and new columns.
```{r 05-54}
# create data frame with 7 columns: year, month, day, dep_delay, arr_delay, distance, air_time
flights_7_columns <- select(flights,
year:day,
ends_with("delay"),
distance,
air_time
)
```
```{r 05-55}
# calculate and add columns for gain, hours, and gain_per_hour
mutate(flights_7_columns,
gain = dep_delay - arr_delay,
hours = air_time / 60,
gain_per_hour = gain / hours
)
```
`transmute()` adds new columns based on values from existing columns. Data frame only includes new columns.
```{r 05-56}
# calculate and add columns for gain, hours, and gain_per_hour
transmute(flights_7_columns,
gain = dep_delay - arr_delay,
hours = air_time / 60,
gain_per_hour = gain / hours
)
```
### Useful creation functions
There are many functions to use with `mutate()`. The function must be vectorised: it must take a vector of values as input, return a vector with the same number of values as output.
Arithmetic operators: `+`, `-`, `*`, `/`, `^`
aggregate functions: `sum`, `mean`
Modular arithmetic: `%/%` (integer division) and `%%` (remainder)
Logs: `log()`, `log2()`, `log10()`
Offsets: `lead()` leading values; `lag()` lagging values.
Cumulative and rolling aggregates: `cumsum()` cumulative sums, `cumprod()` cumulative products, `cummin()` cumulative min, `cummax()` cumulative max, `cummean()` cumulative means.
Logical comparisons: `<`, `<=`, `>`, `>=`, `!=`, and `==`
Ranking: `min_rank(x)` gives ranks from smallest to largest. `min_rank(desc(x))` gives ranks from largest to smallest. `row_number()`, `dense_rank()`, `percent_rank()`, `cume_dist()`, `ntile()`.
Testing out various functions to see what they do.
```{r 05-57}
transmute(flights,
dep_time,
arr_time,
# Modular arithmetic
dep_hour = dep_time %/% 100,
dep_minute = dep_time %% 100,
# Arithmetic
duration = arr_time - dep_time,
# logs
log_duration = log2(duration),
# Offsets
lead_duration = lead(duration)
)
```
```{r 05-58}
transmute(flights,
dep_time,
arr_time,
# Arithmetic
duration = arr_time - dep_time,
# Cumulative aggregates
cumsum_duration = cumsum(duration),
# Logical comparisons
long_duration = duration > 300,
# Ranking
rank_duration = min_rank(duration)
)
```
## Grouped summaries with summarize()
`summarize()` or `summarise()` collapses a data frame to a single row
By default, summarize includes NA values. `summarize()` will return `NA` if any values are `NA`.
```{r 05-59}
# calculate the mean departure delay for all the flights. Include NA.
summarize(flights, delay = mean(dep_delay))
```
Need to use `na.rm = TRUE` to remove NA values.
```{r 05-60}
# calculate the mean departure delay for all the flights. Remove NA.
summarize(flights, delay = mean(dep_delay, na.rm = TRUE))
```
You use `nrow()`, `filter()`, and `is.na()` check the number of `NA` values for a column.
```{r 05-61}
# total rows in flights
nrow(flights)
# [1] 336776
# rows where dep_delay is NA
nrow(filter(flights, is.na(dep_delay)))
# [1] 8255
# rows where dep_delay has a value
nrow(filter(flights, !is.na(dep_delay)))
# [1] 328521
```
Use `summarize()` and `group_by()` to calculate values for each group.
```{r 05-62}
# group flights by year, month and day to get daily flights
by_day <- group_by(flights, year, month, day)
# calculate mean departure delay for each day
summarize(by_day, delay = mean(dep_delay, na.rm = TRUE))
```
### Combining multiple operations with the pipe
Use pipe `%>%` to perform multiple operations on a data set. Do step 1, and then do step 2...
pipe makes code more readable.
```{r 05-63}
# groyup flights by day, and then calculate mean departure delay for each day
flights %>%
group_by(year, month, day) %>%
summarize(delay = mean(dep_delay, na.rm = TRUE))
```
### Counts
Whenever you do any aggregation, you should include a count of values `n()`, or a count of non-missing values `sum(!is.na(x))` to check number of items per group.
```{r 05-64}
# get flights that were not cancelled
not_cancelled <- flights %>%
filter(!is.na(dep_delay), !is.na(arr_delay))
# group flights by tail number, and then calculate mean arrival delay and number of not canceled flights for each tail number
delays <- not_cancelled %>%
group_by(tailnum) %>%
summarize(
delay = mean(arr_delay, na.rm = TRUE),
n = n()
)
delays
```
combine dplyr with ggplot to rearrange and plot data.
dplyr and rest of tidyverse uses `%\>% `; ggplot uses `+`
```{r 05-65}
# pick the delayed flights with more than 25 flights, and then plot the flights.
delays %>%
filter(n > 25) %>%
ggplot(mapping = aes(x = n, y = delay)) +
geom_point(alpha = 1/10)
```
### Useful summary functions
Many functions can be used with `summarize()`
Measures of location: `median(x)` value where 50% of x is above it, and 50% is below it.
Measures of spread: `sd(x)` standard deviation is the standard measure of spread. interquartile range `IQR(x)` and median absolute deviation `mad(x)` are good if there are outliers.
Measures of rank: `min(x)`, `quantile(x, 0.25)`, `max(x)`
Measures of position: `first(x)`, `nth(x, 2)`, `last(x)`.
Counts: `n()` returns the size of the current group. `sum(!is.na(x))` returns the number of non-missing values. `n_distinct(x)` returns the number of unique values.
`count()` is a shortcut for `group_by()` and `summarize()` to return count by group.
```{r 05-66}
# count the number of flights per destination
not_cancelled %>%
group_by(dest) %>%
summarize(n = n())
```
```{r 05-67}
# count the number of flights per destination
not_cancelled %>%
count(dest)
```
use `sort=TRUE` with `count()` to sort the counts
```{r 05-68}
# count the number of flights per destination, and sort the results
not_cancelled %>%
count(dest, sort=TRUE)
```
optionally provide a weight variable to get a sum of that variable.
```{r 05-69}
# get the total number of miles planes flew for each destination
not_cancelled %>%
count(dest, wt = distance)
```
When used with numeric functions, `TRUE` is converted to 1 and `FALSE` is converted to 0.
```{r 05-70, eval=FALSE}
sum(TRUE)
# [1] 1
sum(5 > 0)
# [1] 1
sum(FALSE)
# [1] 0
sum(5 < 0)
# [1] 0
```
Counts and proportions of logical values: `sum(x)` gives the number of TRUEs, and `mean(x)` gives the proportion of TRUEs.
```{r 05-71}
# number of flight per day delayed by more than an 60 minutes
not_cancelled %>%
group_by(year, month, day) %>%
summarize(hour_count = sum(arr_delay > 60))
```
```{r 05-72}
# proportion of flights per day delayed by more than an 60 minutes
not_cancelled %>%
group_by(year, month, day) %>%
summarize(hour_prop = mean(arr_delay > 60))
```
### Grouping by multiple variables
progressively rolling up summaries for sums and counts
```{r 05-73}
# group flights by day
daily <- group_by(flights, year, month, day)
```
```{r 05-74}
# number flights per day
(per_day <- summarize(daily, flights = n()))
```
```{r 05-75}
# number flights per month
(per_month <- summarize(per_day, flights = sum(flights)))
```
```{r 05-76}
# number of flights per year
(per_year <- summarize(per_month, flights = sum(flights)))
```
### Ungrouping
`ungroup()` removes grouping.
```{r 05-77}
# ungroup the daily flights to count the total number of flights
daily %>%
ungroup() %>%
summarize(flights = n())
```
If during analysis the data doesn't look right, you can try to use `ungroup()` to check if the data was previously grouped.
## Grouped mutates (and filters)
use `group()` with `mutate()` and `filter()`
```{r 05-78}
# get the flights with the top 10 largest arrival delays per day
top_delay <- flights_7_columns %>%
group_by(year, month, day) %>%
filter(rank(desc(arr_delay)) <= 10)
top_delay
```
```{r 05-79}
# add rank column, and sort the rows by day and rank to check if top_delay
# is returning what we expect
top_delay %>%
mutate(rank = rank(desc(arr_delay)) ) %>%
arrange(year, month, day, rank)
```
## Meeting Videos
### Cohort 1
`r knitr::include_url("https://www.youtube.com/embed/J6mGn1F1kiA")`
<details>
<summary> Meeting chat log </summary>
```
00:13:48 Jon Harmon (jonthegeek): "dplyr" as in "data plyer" (tools for working with data)
00:22:03 Ryan Metcalf: I call the | as “handlebar”…may be my own lingo too.
00:22:20 lucus w: I like vbar
00:38:30 Ryan Metcalf: Quick thought, on dat ingestion, does the tidyverse convert null to NA? Or an alternative, does is.na look for null too?
00:39:19 Jon Harmon (jonthegeek): Null coming in from a database will convert to NA. NULL specifically means "does not exist," and can't be inside a vector of numbers in R. It's its own data type in R.
00:39:24 lucus w: I believe NA and NULL aren’t the same thing, so I’d guess no
00:39:53 Njoki Njuki Lucy: can one use filter to remove na?
00:40:01 Ryan Metcalf: 👍🏻
00:40:45 lucus w: filter(!is.na(x)) wil do the trick
00:40:51 Jon Harmon (jonthegeek): filter(flights, !is.na(month)) would remove NA rows.
00:41:05 Jon Harmon (jonthegeek): Lucus beat me to it :D
00:42:22 Njoki Njuki Lucy: awesome, thank you both :)
00:46:06 Jon Harmon (jonthegeek): Chapter 14 has more on regular expressions.
00:47:03 Jon Harmon (jonthegeek): https://regexr.com/
00:58:04 lucus w: I wish all aggregate functions would have na.rm = TRUE as a default
01:04:21 lucus w: is magrittr a function or just an operator
01:04:35 lucus w: %>%
01:04:38 Jon Harmon (jonthegeek): If you're curious why the pipe package is called magrittr: https://en.wikipedia.org/wiki/The_Treachery_of_Images#/media/File:MagrittePipe.jpg
01:05:02 Jon Harmon (jonthegeek): magrittr is the package which exports the %>% function (but it's a special kind of function because it can go in the middle of its arguments)
01:16:15 Eileen: Great presentation
01:16:17 Ryan Metcalf: Great job!
01:16:34 LG: Thank you!
01:16:46 Njoki Njuki Lucy: Thank you!
01:17:40 Eileen: Thank you!
```
</details>