-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_wandb.py
122 lines (113 loc) · 5.56 KB
/
data_wandb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import pandas as pd
import wandb
import bcolors
api = wandb.Api(timeout=19)
def save_run(run, path):
"""
Save a run to a file
:param run: run to save
:param path: path to save to
:return: run history
"""
run = api.run(run)
append = run.history()
append["run_id"] = run.id
append["batch_size"] = run.config.get("batch_size")
append["future"] = run.config.get("future")
append["past"] = run.config.get("past")
append["units"] = run.config.get("units")
append["dropout"] = run.config.get("dropout")
append["runtime"] = run.summary.get("runtime")
append["epoch"] = run.summary.get("epoch")
append["best_val_loss"] = run.summary.get("best_val_loss")
append["best_epoch"] = run.summary.get("best_epoch")
append["pretrained"] = run.config.get("pretrained")
append["trainable"] = run.config.get("trainable")
append["preprocess"] = run.config.get("preprocess")
append["optimizer"] = run.config.get("optimizer")
append["loss"] = run.config.get("loss")
append["train_split"] = run.config.get("train_split")
append["h_pass"] = run.config.get("h_pass")
append["l_pass"] = run.config.get("l_pass")
append["layers_transferred"] = run.config.get("layers_transferred")
append["bci_task"] = run.config.get("bci_task")
append["repetitions"] = run.config.get("repetitions")
append["architecture"] = run.config.get("architecture")
append["pretrain_dense_units"] = run.config.get("pretrain_dense_units")
append["test_channel"] = run.config.get("test_channel")
append["model"] = run.config.get("model")
append["n_augmentations"] = run.config.get("n_augmentations")
append["dense_units"] = run.config.get("dense_units")
print(f"{bcolors.HEADER}Saving run history {run.id} to {path}.{bcolors.ENDC}")
append.to_csv(path)
return run.history()
def save_runs(runs, path, filter={}, ):
"""
Save a list of runs to a file
:param runs: list of runs to save
:param path: path to save to
:param filter: filter for the runs
:return: runs history
"""
runs_wandb = api.runs(runs, filters=filter)
print(f"{bcolors.HEADER}Saving {len(runs_wandb)} runs' history to {path}.{bcolors.ENDC}")
df = pd.DataFrame()
for run in runs_wandb:
append = run.history()
append["run_id"] = run.id
append["batch_size"] = run.config.get("batch_size")
append["future"] = run.config.get("future")
append["past"] = run.config.get("past")
append["units"] = run.config.get("units")
append["dropout"] = run.config.get("dropout")
append["runtime"] = run.summary.get("runtime")
append["epoch"] = run.summary.get("epoch")
append["best_val_loss"] = run.summary.get("best_val_loss")
append["best_epoch"] = run.summary.get("best_epoch")
append["pretrained"] = run.config.get("pretrained")
append["trainable"] = run.config.get("trainable")
append["preprocess"] = run.config.get("preprocess")
append["optimizer"] = run.config.get("optimizer")
append["loss"] = run.config.get("loss")
append["train_split"] = run.config.get("train_split")
append["h_pass"] = run.config.get("h_pass")
append["l_pass"] = run.config.get("l_pass")
append["layers_transferred"] = run.config.get("layers_transferred")
append["bci_task"] = run.config.get("bci_task")
append["repetitions"] = run.config.get("repetitions")
append["architecture"] = run.config.get("architecture")
append["pretrain_dense_units"] = run.config.get("pretrain_dense_units")
append["test_channel"] = run.config.get("test_channel")
append["model"] = run.config.get("model")
append["n_augmentations"] = run.config.get("n_augmentations")
append["dense_units"] = run.config.get("dense_units")
df = df.append(append)
df.to_csv(path)
return df
if __name__ == "__main__":
# save_run("esbenkran/fnirs_ml/3065xozb", "data/analysis/stack_lstm.csv")
# save_run("esbenkran/fnirs_ml/3qngff05", "data/analysis/lstm.csv")
# save_run("esbenkran/fnirs_ml/2e2s0nnz", "data/analysis/lstm-4.csv")
# save_runs("esbenkran/fnirs_sweep", "data/analysis/4_sweep.csv",
# {"config.future": 4, "sweep": "v6x95luq"})
# save_runs("esbenkran/fnirs_sweep",
# "data/analysis/16_sweep.csv", {"config.future": 16})
# save_runs("esbenkran/fnirs_transfer", "data/analysis/16_transfer_sweep.csv",
# {"tags": "fourth", })
# # Other sweeps that run the same config as the below: ["36v7trv1", "v7gbfmpo"]
# save_runs("esbenkran/fnirs_transfer",
# "data/analysis/stack_transfer_layer_freeze.csv",
# {"sweep": {"$in": ["fx3h66q6"]}})
# save_runs("esbenkran/thought_classification",
# "data/analysis/thought_classification.csv",
# {"sweep": {"$in": ["cp3p80yp"]}})
# save_runs("esbenkran/thought_classification", "data/analysis/pretraining.csv",
# {"sweep": {"$in": ["8qp1jtu0", "1iubvmc2"]}})
# save_runs("esbenkran/thought_classification", "data/analysis/transfer_learning.csv",
# {"sweep": {"$in": ["g3zov98e", "sb135301"]}})
save_run("esbenkran/thought_classification/18sb2xx0",
"data/analysis/dense.csv")
save_run("esbenkran/thought_classification/2x3e0v0x",
"data/analysis/lstm.csv")
save_run("esbenkran/thought_classification/24orv839",
"data/analysis/lstm-3.csv")