-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalysis.Rmd
186 lines (170 loc) · 6.12 KB
/
analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
title: "Analysis"
output: html_notebook
---
```{r}
pacman::p_load(tidyverse, R.matlab, showtext, viridis, purrr, ggrepel, png, grid, ggthemes, forcats)
```
```{r fig.height=8, fig.width=8, message=FALSE}
sweep_4 = read_csv("../data/analysis/4_sweep.csv")
sweep_16 = read_csv("../data/analysis/16_sweep.csv")
stacked_16 = read_csv("../data/analysis/stack_lstm.csv")
transfer_16 = read_csv("../data/analysis/16_transfer_sweep.csv") %>%
mutate(pretrainable = paste0(pretrained, trainable))
stack_transfer_freeze = read_csv("../data/analysis/transfer_learning.csv") %>%
mutate(layers_transferred = factor(layers_transferred))
stack_transfer_freeze_pivot <- stack_transfer_freeze %>%
group_by(run_id) %>%
summarise(
best_val_loss = mean(best_val_loss),
val_loss_last = last(val_loss),
val_loss_1 = nth(val_binary_crossentropy, 1),
val_loss_50 = nth(val_binary_crossentropy, 50),
val_loss_10 = nth(val_binary_crossentropy, 10),
val_loss_25 = nth(val_binary_crossentropy, 25),
val_loss_100 = nth(val_binary_crossentropy, 100),
bci_task = last(str_extract(bci_task, "(?<=/bci_task_\\d_)[1-3a-z_]+(?=.snirf)")),
layers_transferred = last(layers_transferred),
trainable = last(trainable),
model = last(model)
) %>%
filter(model == "models/model-lstm-3.h5") %>%
group_by(bci_task, layers_transferred, trainable) %>%
summarise(
sd_best_val_loss = sd(best_val_loss, na.rm=T),
sd_val_loss_last = sd(val_loss_last, na.rm=T),
sd_val_loss_1 = sd(val_loss_1, na.rm=T),
sd_val_loss_10 = sd(val_loss_10, na.rm=T),
sd_val_loss_25 = sd(val_loss_25, na.rm=T),
sd_val_loss_50 = sd(val_loss_50, na.rm=T),
sd_val_loss_100 = sd(val_loss_100, na.rm=T),
mean_best_val_loss = mean(best_val_loss, na.rm=T),
mean_val_loss_last = mean(val_loss_last, na.rm=T),
mean_val_loss_1 = mean(val_loss_1, na.rm=T),
mean_val_loss_10 = mean(val_loss_10, na.rm=T),
mean_val_loss_25 = mean(val_loss_25, na.rm=T),
mean_val_loss_50 = mean(val_loss_50, na.rm=T),
mean_val_loss_100 = mean(val_loss_100, na.rm=T),
) %>%
pivot_longer(cols=matches("val_loss"), names_pattern = "^(sd|mean)_(.*)$", names_to = c("limit", "val_loss")) %>%
pivot_wider(names_from=limit, values_from=value, names_repair="check_unique") %>%
mutate(
layers_transferred = as.numeric(layers_transferred) - 1,
label_position = layers_transferred,
val_loss = fct_relevel(val_loss, c("val_loss_10", "val_loss_25", "val_loss_50", "val_loss_100", "val_loss_last", "best_val_loss")),
trainable = if_else(trainable, "Yes", "No"),
trainable = fct_relevel(trainable, c("Yes", "No")),
train_loss = factor(paste0(trainable, val_loss)))
p <- stack_transfer_freeze_pivot %>%
filter(val_loss%in%c("val_loss_last")) %>%
ggplot() +
aes(color=val_loss, fill=val_loss, linetype=trainable, label = round(mean, 2), x=layers_transferred, y=mean, ymin=mean - sd, ymax = mean + sd) +
geom_ribbon(alpha=0.1) +
geom_line() +
geom_text_repel(nudge_y = 0.1, aes(x = label_position)) +
facet_wrap(~bci_task, ncol = 1) +
# geom_line(aes(y=val_loss), alpha=0.35) +
theme_bw() +
scale_fill_viridis_d(end=0.7) +
scale_color_viridis_d(end=0.7) +
coord_cartesian(expand=F, ylim=c(0, 1), xlim=c(0, 4)) +
theme(
panel.spacing = unit(0, "cm"),
legend.position = "bottom",
text = element_text(family="Lato", lineheight = 0.5)
)
```
## Pretraining analysis
```{r}
df <- read_csv("../data/analysis/pretraining.csv")
df %>%
group_by(run_id) %>%
summarise(
architecture = last(architecture),
future = last(future),
best_val_loss = last(best_val_loss)
) %>%
group_by(architecture, future) %>%
summarise(
mu = mean(best_val_loss, na.rm=T),
sigma = sd(best_val_loss, na.rm=T),
n = n(),
min = min(best_val_loss, na.rm=T),
max = max(best_val_loss, na.rm=T),
range = max-min
)
```
## Transfer learning analysis
```{r}
df <- read_csv("../data/analysis/transfer_learning.csv")
df %>%
group_by(run_id) %>%
summarise(
model = last(model),
layers_transferred = last(layers_transferred),
bci_task = last(bci_task),
n_augmentations = last(n_augmentations),
trainable = last(trainable),
best_val_loss = last(best_val_loss),
val_loss = last(val_loss)
) %>%
group_by(model, layers_transferred, bci_task, n_augmentations, trainable) %>%
summarise(
mu = mean(best_val_loss, na.rm=T),
sigma = sd(best_val_loss, na.rm=T),
n = n(),
min = min(best_val_loss, na.rm=T),
max = max(best_val_loss, na.rm=T),
range = max-min
)
df_grouped <- df %>%
group_by(run_id) %>%
mutate(
model = case_when(
model == "models/model-dense.h5" ~ "dense",
model == "models/model-lstm-3.h5" ~ "lstm-3",
model == "models/model-lstm.h5" ~ "lstm"
)
) %>%
summarise(
model = last(model),
layers_transferred = last(layers_transferred),
bci_task = last(bci_task),
n_augmentations = last(n_augmentations),
trainable = last(trainable),
best_val_loss = last(best_val_loss),
start_val_loss = first(val_loss),
val_loss = last(val_loss),
val_acc = round(last(val_custom_binary_accuracy) * 100, 2),
best_val_acc = round(max(val_custom_binary_accuracy) * 100, 2),
acc = round(max(custom_binary_accuracy) * 100, 2),
pretrained = case_when(
layers_transferred == 0 ~ FALSE,
layers_transferred == 4 ~ TRUE,
TRUE ~ NA
)
) %>%
drop_na(pretrained)
df_grouped %>%
group_by(bci_task, model, pretrained) %>%
summarise(
max = max(acc, na.rm=T),
min = min(acc, na.rm=T),
mu = mean(acc, na.rm=T),
sigma = sd(acc, na.rm=T),
n = n(),
range = max-min
)
df_grouped %>%
group_by(bci_task, model, pretrained) %>%
summarise(
max = max(val_acc, na.rm=T),
min = min(val_acc, na.rm=T),
mu = mean(val_acc, na.rm=T),
sigma = sd(val_acc, na.rm=T),
learned = first(val_loss) < first(start_val_loss),
n = n(),
range = max-min
) %>%
select(learned, everything())
```