-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path3_data_figure.py
124 lines (104 loc) · 4.47 KB
/
3_data_figure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import mne
import mne_nirs
import pandas as pd
import numpy as np
from helper_functions import *
from keras.models import load_model
from tensorflow.keras.preprocessing import timeseries_dataset_from_array
import bcolors
def generate_predict_data(path, start_time, end_time, model_paths, past=39, futures=[16]):
"""
Creates a dataframe with index and real values along with two columns for each model:
1. The predicted values from the real data
2. The predicted values from the self-generated data
:param str path: path to the raw data
:param int start_time: start index of the prediction
:param int end_time: end index of the prediction
:param list model_paths: paths to the models
:param int past: length of the past
:param list futures: list of future lengths (as long as the model_paths)
:return: dataframe with index and real values along with two columns for each model
"""
nirs = load_and_process(path)
nirs = normalize_and_remove_time(df=nirs).values
nirs = nirs[start_time:end_time, :]
X = nirs
df = pd.DataFrame()
df["Real"] = nirs[:, 0]
for idx, model_path in enumerate(model_paths):
print(
f"{bcolors.HEADER}Loading model {model_path} with future value of {futures[idx]}. Model number: {idx+1}.{bcolors.ENDC}")
start = past + futures[idx]
sequence_length = past
X = nirs
print(f"X shape: {X.shape}")
if "model" in model_path:
# This seems to give an error of the length of input: 129 instead of 145
X = X[:-futures[idx], :]
Y = X[start:, [0]]
batch_size = len(Y)
dataset = timeseries_dataset_from_array(
X,
Y,
sequence_length=sequence_length,
sampling_rate=1,
batch_size=batch_size,
sequence_stride=1,
)
else:
X = X
Y = X[start:, [0]]
batch_size = len(X)
dataset = timeseries_dataset_from_array(
X,
Y,
sequence_length=sequence_length,
sampling_rate=1,
batch_size=batch_size,
sequence_stride=1,
)
for batch in dataset.take(1):
inputs, targets = batch
print("Input shape:", inputs.numpy().shape)
print("Target shape:", targets.numpy().shape)
if "model" in model_path:
model = load_model(model_path)
if "dense" in model_path:
print("Dense model predictions")
print(inputs.numpy()[0][:, 0].shape)
predictions = model.predict(inputs.numpy()[:, :, 0])
# predictions = [model.predict(i[:, 0])
# for i in inputs]
elif "lstm" in model_path:
print("LSTM model predictions")
predictions = [model.predict(i[None, ...]) for i in inputs]
elif model_path == "mean":
predictions = np.array([[np.array(X).mean() for i in inputs]])
elif model_path == "last_value":
predictions = [inputs[:, -1, 0]]
elif model_path == "gaussian_random":
predictions = [np.random.normal(0, 1, len(inputs))]
print(
f"{bcolors.HEADER}Start index: {start}\nStart padding shape: {np.array([nirs[i, 0] for i in range(start)]).shape}\nEvaluation shape: {np.array(np.concatenate(predictions)).flatten().shape}{bcolors.ENDC}")
df[f"Prediction_{idx}_{futures[idx]}"] = np.concatenate(
([np.NaN for i in range(start)], np.array(np.concatenate(predictions)).flatten()))
print(f"{bcolors.OK}Finished with this loop.{bcolors.ENDC}")
df["Index"] = range(len(df))
df.plot(x="Index", y=np.concatenate(
(
["Real"],
["Prediction_" + str(i) + "_" + str(futures[i]) for i in range(len(futures))]))).get_figure().savefig("media/prediction.png")
df.to_csv("data/visualization/prediction_plot.csv")
return df
if __name__ == "__main__":
generate_predict_data(
"data/snirf/pretrain_3.snirf",
2000, 2200,
model_paths=[
"last_value",
"models/model-dense.h5",
"models/model-lstm.h5",
"models/model-lstm-3.h5",
"mean",
],
futures=[16, 16, 16, 16, 16])