-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsymspell6.h
1246 lines (1070 loc) · 48.4 KB
/
symspell6.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef SYMSPELL6_H
#define SYMSPELL6_H
#include <stdint.h>
#include <vector>
#include <functional>
#include <string>
#include <cstring>
#include <exception>
#include <limits>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <mutex>
#include <tuple>
#include <iostream>
#include <fstream>
#include <sstream>
#define _SILENCE_STDEXT_HASH_DEPRECATION_WARNINGS 1
#ifdef _MSC_VER
# include <windows/port.h>
//typedef __int8 int8_t;
typedef unsigned __int8 u_int8_t;
typedef __int32 int32_t;
typedef unsigned __int32 u_int32_t;
typedef __int64 int64_t;
typedef unsigned __int64 u_int64_t;
char *strndup(const char *s1, size_t n)
{
char *copy = (char*)malloc(n + 1);
memcpy(copy, s1, n);
copy[n] = 0;
return copy;
};
#else
# define _strdup strdup
#endif
#ifdef USE_SPARSEPP
# define SPP_USE_SPP_ALLOC 1
# define CUSTOM_MAP sparse_hash_map
# define CUSTOM_SET sparse_hash_set
# include <sparsepp/spp.h>
using spp::sparse_hash_map;
using spp::sparse_hash_set;
#else
# define CUSTOM_MAP unordered_map
# define CUSTOM_SET unordered_set
# include <unordered_map>
# include <unordered_set>
#endif
using namespace std;
namespace symspell {
#define defaultMaxEditDistance 2
#define defaultPrefixLength 7
#define defaultCountThreshold 1
#define defaultInitialCapacity 16
#define defaultCompactLevel 5
#define mini(a, b, c) (min(a, min(b, c)))
namespace {
int32_t findCharLocation(const char * text, char ch)
{
const char* finded = strchr(text, ch);
if (finded == nullptr)
return -1;
return finded - text + 1;
}
}
struct Hash64 {
size_t operator()(uint64_t k) const { return (k ^ 14695981039346656037ULL) * 1099511628211ULL; }
};
struct comp_c_string {
bool operator()(const char *s1, const char *s2) const {
return (s1 == s2) || (s1 && s2 && strcmp(s1, s2) == 0);
}
};
struct hash_c_string {
void hash_combine(size_t& seed, const char& v)
{
seed ^= v + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
std::size_t operator() (const char* p) const
{
size_t hash = 0;
for (; *p; ++p)
hash ^= *p + 0x9e3779b9 + (hash << 6) + (hash >> 2);
return hash;
}
};
/*
* Copied from https://github.com/PierreBoyeau/levenshtein_distance
* ########## BEGIN ##########
*/
int levenshtein_dist(char const* word1, char const* word2) {
///
/// Please use lower-case strings
/// word1 : first word
/// word2 : second word
/// getPath : bool. If True, sequence of operations to do to go from
/// word1 to word2
///
int size1 = strlen(word1) + 1, size2 = strlen(word2) + 1;
int suppr_dist, insert_dist, subs_dist;
int* dist = new int[(size1)*size2];
for (int i = 0; i < size1; ++i)
dist[size2*i] = i;
for (int j = 0; j < size2; ++j)
dist[j] = j;
for (int i = 1; i < size1; ++i) {
for (int j = 1; j < size2; ++j) {
suppr_dist = dist[size2*(i - 1) + j] + 1;
insert_dist = dist[size2*i + j - 1] + 1;
subs_dist = dist[size2*(i - 1) + j - 1];
if (word1[i - 1] != word2[j - 1]) { // word indexes are implemented differently.
subs_dist += 1;
}
dist[size2*i + j] = mini(suppr_dist, insert_dist, subs_dist);
}
}
// --------------------------------------------------------
int res = dist[size1 * size2 - 1];
delete[] dist;
return(res);
}
int dl_dist(char const* word1, char const* word2) {
/// Damerau-Levenshtein distance
/// Please use lower-case strings
/// word1 : first word
/// word2 : second word
///
int size1 = strlen(word1) + 1, size2 = strlen(word2) + 1;
int suppr_dist, insert_dist, subs_dist, val;
int* dist = new int[size1*size2];
for (int i = 0; i < size1; ++i)
dist[size2*i] = i;
for (int j = 0; j < size2; ++j)
dist[j] = j;
for (int i = 1; i < size1; ++i) {
for (int j = 1; j < size2; ++j) {
suppr_dist = dist[size2*(i - 1) + j] + 1;
insert_dist = dist[size2*i + j - 1] + 1;
subs_dist = dist[size2*(i - 1) + j - 1];
if (word1[i - 1] != word2[j - 1]) // word indexes are implemented differently.
subs_dist += 1;
val = mini(suppr_dist, insert_dist, subs_dist);
if (((i >= 2) && (j >= 2)) && ((word1[i - 1] == word2[j - 2]) && (word1[i - 2] == word2[j - 1])))
val = min(dist[size2*(i - 2) + j - 2] + 1, val);
dist[size2*i + j] = val;
}
}
int res = dist[size1*size2 - 1];
delete[] dist;
return(res);
}
/*
* ########## END ##########
*/
class SuggestionStage;
template<typename T> class ChunkArray;
enum class Verbosity
{
/// <summary>Top suggestion with the highest term frequency of the suggestions of smallest edit distance found.</summary>
Top,
/// <summary>All suggestions of smallest edit distance found, suggestions ordered by term frequency.</summary>
Closest,
/// <summary>All suggestions within maxEditDistance, suggestions ordered by edit distance
/// , then by term frequency (slower, no early termination).</summary>
All
};
class EditDistance {
public:
/// <summary>Wrapper for third party edit distance algorithms.</summary>
/// <summary>Supported edit distance algorithms.</summary>
enum class DistanceAlgorithm {
/// <summary>Levenshtein algorithm.</summary>
Levenshtein,
/// <summary>Damerau optimal string alignment algorithm.</summary>
DamerauOSA
};
EditDistance(DistanceAlgorithm algorithm) {
this->algorithm = algorithm;
switch (algorithm) {
case DistanceAlgorithm::DamerauOSA: this->distanceComparer = dl_dist; break;
case DistanceAlgorithm::Levenshtein: this->distanceComparer = levenshtein_dist; break;
default: throw std::invalid_argument("Unknown distance algorithm.");
}
}
int Compare(char const* string1, char const* string2, int maxDistance) {
return this->distanceComparer(string1, string2); // todo: max distance
}
private:
DistanceAlgorithm algorithm;
int(*distanceComparer)(char const*, char const*);
};
class SuggestItem
{
public:
/// <summary>The suggested correctly spelled word.</summary>
const char* term;
/// <summary>Edit distance between searched for word and suggestion.</summary>
u_int8_t distance = 0;
/// <summary>Frequency of suggestion in the dictionary (a measure of how common the word is).</summary>
int64_t count = 0;
SuggestItem() { }
SuggestItem(const symspell::SuggestItem & p)
{
this->count = p.count;
this->distance = p.distance;
this->term = p.term;
}
SuggestItem(const char* term, int32_t distance, int64_t count)
{
this->term = term;
this->distance = distance;
this->count = count;
}
~SuggestItem()
{
delete[] term;
}
bool CompareTo(SuggestItem const& other)
{
// order by distance ascending, then by frequency count descending
if (this->distance == other.distance)
{
if (other.count == this->count)
return false;
else if (other.count > this->count)
return true;
return false;
}
if (other.distance > this->distance)
return false;
return true;
}
bool operator == (const SuggestItem &ref) const
{
return strcmp(this->term, ref.term) == 0;
}
std::size_t GetHashCode()
{
return hash_c_string{}(term);
}
SuggestItem& ShallowCopy()
{
SuggestItem item;
item.count = this->count;
item.distance = this->distance;
item.term = this->term;
return item;
}
};
class WordSegmentationItem
{
public:
const char* segmentedString{ nullptr };
const char* correctedString{ nullptr };
u_int8_t distanceSum = 0;
double probabilityLogSum = 0;
WordSegmentationItem() { }
WordSegmentationItem(const symspell::WordSegmentationItem & p)
{
this->segmentedString = p.segmentedString;
this->correctedString = p.correctedString;
this->distanceSum = p.distanceSum;
this->probabilityLogSum = p.probabilityLogSum;
}
WordSegmentationItem& operator=(const WordSegmentationItem&) { return *this; }
WordSegmentationItem& operator=(WordSegmentationItem&&) { return *this; }
void set(const char* pSegmentedString, const char* pCorrectedString, u_int8_t pDistanceSum, double pProbabilityLogSum)
{
this->segmentedString = pSegmentedString;
this->correctedString = pCorrectedString;
this->distanceSum = pDistanceSum;
this->probabilityLogSum = pProbabilityLogSum;
}
~WordSegmentationItem()
{
delete[] segmentedString;
delete[] correctedString;
}
};
template<typename T>
class ChunkArray
{
public:
vector<vector<T>> Values; //todo: use pointer array
size_t Count;
ChunkArray()
{
Count = 0;
}
void Reserve(size_t initialCapacity)
{
size_t chunks = (initialCapacity + ChunkSize - 1) / ChunkSize;
Values.resize(chunks);
for (size_t i = 0; i < chunks; ++i)
{
Values[i].resize(ChunkSize);
}
}
size_t Add(T & value)
{
if (Count == Capacity())
{
Values.push_back(vector<T>());
Values[Values.size() - 1].resize(ChunkSize);
}
int row = Row(Count);
int col = Col(Count);
Values[row][col] = value;
return Count++;
}
void Clear()
{
Count = 0;
}
T& at(size_t index)
{
return Values[Row(index)][Col(index)];
}
void set(size_t index, T &value)
{
Values[Row(index)][Col(index)] = value;
}
private:
const int32_t ChunkSize = 4096; //this must be a power of 2, otherwise can't optimize Row and Col functions
const int32_t DivShift = 12; // number of bits to shift right to do division by ChunkSize (the bit position of ChunkSize)
int Row(uint32_t index) { return index >> DivShift; } // same as index / ChunkSize
int32_t Col(uint32_t index) { return index & (ChunkSize - 1); } //same as index % ChunkSize
int32_t Capacity() { return Values.size() * ChunkSize; }
};
class SuggestionStage
{
public:
class Node;
class Entry;
CUSTOM_MAP<size_t, Entry*> Deletes;
CUSTOM_MAP<size_t, Entry*>::iterator DeletesEnd;
ChunkArray<Node> Nodes;
SuggestionStage(size_t initialCapacity)
{
#ifdef USE_SPARSEPP
Deletes.resize(initialCapacity);
#else
Deletes.reserve(initialCapacity);
#endif
Nodes.Reserve(initialCapacity * 2);
}
size_t DeleteCount() { return Deletes.size(); }
size_t NodeCount() { return Nodes.Count; }
void Clear()
{
Deletes.clear();
Nodes.Clear();
DeletesEnd = Deletes.end();
}
void Add(size_t deleteHash, const char* suggestion)
{
auto deletesFinded = Deletes.find(deleteHash);
Entry* entry = nullptr;
if (deletesFinded == DeletesEnd) {
entry = new Entry;
entry->count = 0;
entry->first = -1;
}
else
entry = deletesFinded->second;
int64_t next = entry->first;
++entry->count;
entry->first = Nodes.Count;
Deletes[deleteHash] = entry;
Node item;
item.next = next;
item.suggestion = suggestion;
Nodes.Add(item);
}
void CommitTo(CUSTOM_MAP<size_t, vector<const char*>> & permanentDeletes)
{
auto permanentDeletesEnd = permanentDeletes.end();
for (auto it = Deletes.begin(); it != DeletesEnd; ++it)
{
auto permanentDeletesFinded = permanentDeletes.find(it->first);
vector<const char*>* suggestions = nullptr;
size_t i;
if (permanentDeletesFinded != permanentDeletesEnd)
{
suggestions = &permanentDeletesFinded->second;
i = suggestions->size();
vector<const char*> newSuggestions;
newSuggestions.reserve(suggestions->size() + it->second->count);
std::copy(suggestions->begin(), suggestions->end(), back_inserter(newSuggestions));
permanentDeletes[it->first] = newSuggestions;
}
else
{
i = 0;
suggestions = new vector<const char*>;
int32_t count = it->second->count;
suggestions->reserve(count);
permanentDeletes[it->first] = *suggestions;
}
int next = it->second->first;
while (next >= 0)
{
auto node = Nodes.at(next);
(*suggestions)[i] = node.suggestion;
next = node.next;
++i;
}
}
}
public:
class Node
{
public:
const char* suggestion;
int64_t next;
};
class Entry
{
public:
int64_t count;
int64_t first;
};
};
class SymSpell {
public:
SymSpell(int32_t initialCapacity = defaultInitialCapacity, int32_t maxDictionaryEditDistance = defaultMaxEditDistance, int32_t prefixLength = defaultPrefixLength, int32_t countThreshold = defaultCountThreshold, int32_t compactLevel = defaultCompactLevel)
{
if (initialCapacity < 0) throw std::invalid_argument("initialCapacity");
if (maxDictionaryEditDistance < 0) throw std::invalid_argument("maxDictionaryEditDistance");
if (prefixLength < 1 || prefixLength <= maxDictionaryEditDistance) throw std::invalid_argument("prefixLength");
if (countThreshold < 0) throw std::invalid_argument("countThreshold");
if (compactLevel > 16) throw std::invalid_argument("compactLevel");
#ifdef USE_SPARSEPP
this->words.resize(initialCapacity);
this->deletes.resize(initialCapacity);
#else
this->words.reserve(initialCapacity);
this->deletes.reserve(initialCapacity);
#endif
this->initialCapacity = initialCapacity;
this->distanceComparer = new EditDistance(this->distanceAlgorithm);
this->maxDictionaryEditDistance = maxDictionaryEditDistance;
this->prefixLength = prefixLength;
this->countThreshold = countThreshold;
if (compactLevel > 16) compactLevel = 16;
this->compactMask = ((std::numeric_limits<uint32_t>::max)() >> (3 + compactLevel)) << 2;
this->deletesEnd = this->deletes.end();
this->wordsEnd = this->words.end();
this->belowThresholdWordsEnd = this->belowThresholdWords.end();
this->candidates.reserve(32);
//this->maxDictionaryWordLength = 0;
}
~SymSpell()
{
vector<const char*>::iterator vecEnd;
auto deletesEnd = this->deletes.end();
for (auto it = this->deletes.begin(); it != deletesEnd; ++it)
{
vecEnd = it->second.end();
for (auto vecIt = it->second.begin(); vecIt != vecEnd; ++vecIt)
{
delete[] * vecIt;
}
}
delete this->distanceComparer;
}
bool CreateDictionaryEntry(const char * key, int64_t count, SuggestionStage * staging = nullptr)
{
int keyLen = strlen(key);
if (count <= 0)
{
if (this->countThreshold > 0) return false; // no point doing anything if count is zero, as it can't change anything
count = 0;
}
int64_t countPrevious = -1;
auto belowThresholdWordsFinded = belowThresholdWords.find(key);
auto wordsFinded = words.find(key);
// look first in below threshold words, update count, and allow promotion to correct spelling word if count reaches threshold
// threshold must be >1 for there to be the possibility of low threshold words
if (countThreshold > 1 && belowThresholdWordsFinded != belowThresholdWordsEnd)
{
countPrevious = belowThresholdWordsFinded->second;
// calculate new count for below threshold word
count = ((std::numeric_limits<int64_t>::max)() - countPrevious > count) ? countPrevious + count : (std::numeric_limits<int64_t>::max)();
// has reached threshold - remove from below threshold collection (it will be added to correct words below)
if (count >= countThreshold)
{
belowThresholdWords.erase(key);
belowThresholdWordsEnd = belowThresholdWords.end();
}
else
{
belowThresholdWords[key] = count;
belowThresholdWordsEnd = belowThresholdWords.end();
return false;
}
}
else if (wordsFinded != wordsEnd)
{
countPrevious = wordsFinded->second;
count = ((std::numeric_limits<int64_t>::max)() - countPrevious > count) ? countPrevious + count : (std::numeric_limits<int64_t>::max)();
words[key] = count;
return false;
}
else if (count < CountThreshold())
{
belowThresholdWords[key] = count;
belowThresholdWordsEnd = belowThresholdWords.end();
return false;
}
words[key] = count;
if (keyLen > maxDictionaryWordLength)
maxDictionaryWordLength = keyLen;
EditsPrefix(key, edits);
if (staging != nullptr)
{
auto editsEnd = edits.end();
for (auto it = edits.begin(); it != editsEnd; ++it)
{
staging->Add(*it, _strdup(key));
}
}
else
{
auto editsEnd = edits.end();
for (auto it = edits.begin(); it != editsEnd; ++it)
{
size_t deleteHash = *it;
auto deletesFinded = deletes.find(deleteHash);
if (deletesFinded != deletesEnd)
{
char* tmp = new char[keyLen + 1];
std::memcpy(tmp, key, keyLen);
tmp[keyLen] = '\0';
//delete[] deletes[deleteHash][deletesFinded->second.size() - 1];
deletes[deleteHash].push_back(tmp);
deletesEnd = deletes.end();
}
else
{
char* tmp = new char[keyLen + 1];
std::memcpy(tmp, key, keyLen);
tmp[keyLen] = '\0';
deletes[deleteHash] = vector<const char*>();
//deletes[deleteHash].resize(1);
deletes[deleteHash].push_back(tmp);
deletesEnd = deletes.end();
}
}
}
edits.clear();
return true;
}
void EditsPrefix(const char* key, CUSTOM_SET<size_t>& hashSet)
{
size_t len = strlen(key);
char* tmp = nullptr;
/*if (len <= maxDictionaryEditDistance) //todo fix
hashSet.insert("");*/
if (len > prefixLength)
{
tmp = new char[prefixLength + 1];
std::memcpy(tmp, key, prefixLength);
tmp[prefixLength] = '\0';
}
else
{
tmp = new char[len + 1];
std::memcpy(tmp, key, len);
tmp[len] = '\0';
}
hashSet.insert(stringHash(tmp));
Edits(tmp, 0, hashSet);
}
void Edits(const char * word, int32_t editDistance, CUSTOM_SET<size_t> & deleteWords)
{
auto deleteWordsEnd = deleteWords.end();
++editDistance;
size_t wordLen = strlen(word);
if (wordLen > 1)
{
for (size_t i = 0; i < wordLen; ++i)
{
char* tmp = new char[wordLen];
std::memcpy(tmp, word, i);
std::memcpy(tmp + i, word + i + 1, wordLen - 1 - i);
tmp[wordLen - 1] = '\0';
if (deleteWords.insert(stringHash(tmp)).second)
{
//recursion, if maximum edit distance not yet reached
if (editDistance < maxDictionaryEditDistance && (wordLen - 1) > 1)
Edits(tmp, editDistance, deleteWords);
}
else {
delete[] tmp;
}
}
}
}
void PurgeBelowThresholdWords()
{
belowThresholdWords.clear();
belowThresholdWordsEnd = belowThresholdWords.end();
}
void CommitStaged(SuggestionStage staging)
{
staging.CommitTo(deletes);
}
void Lookup(const char * input, Verbosity verbosity, vector<std::unique_ptr<symspell::SuggestItem>> & items)
{
this->Lookup(input, verbosity, this->maxDictionaryEditDistance, false, items);
}
void Lookup(const char * input, Verbosity verbosity, int32_t maxEditDistance, vector<std::unique_ptr<symspell::SuggestItem>> & items)
{
this->Lookup(input, verbosity, maxEditDistance, false, items);
}
void Lookup(const char * input, Verbosity verbosity, int32_t maxEditDistance, bool includeUnknown, vector<std::unique_ptr<symspell::SuggestItem>> & suggestions)
{
mtx.lock();
suggestions.clear();
edits.clear();
candidates.reserve(32);
//verbosity=Top: the suggestion with the highest term frequency of the suggestions of smallest edit distance found
//verbosity=Closest: all suggestions of smallest edit distance found, the suggestions are ordered by term frequency
//verbosity=All: all suggestions <= maxEditDistance, the suggestions are ordered by edit distance, then by term frequency (slower, no early termination)
// maxEditDistance used in Lookup can't be bigger than the maxDictionaryEditDistance
// used to construct the underlying dictionary structure.
if (maxEditDistance > MaxDictionaryEditDistance()) throw std::invalid_argument("maxEditDistance");
int64_t suggestionCount = 0;
size_t suggestionsLen = 0;
auto wordsFinded = words.find(input);
int inputLen = strlen(input);
// early exit - word is too big to possibly match any words
if (inputLen - maxEditDistance > maxDictionaryWordLength)
{
if (includeUnknown && (suggestionsLen == 0))
{
std::unique_ptr<SuggestItem> unq(new SuggestItem(_strdup(input), maxEditDistance + 1, 0));
suggestions.push_back(std::move(unq));
}
mtx.unlock();
return;
}
// quick look for exact match
if (wordsFinded != wordsEnd)
{
suggestionCount = wordsFinded->second;
{
std::unique_ptr<SuggestItem> unq(new SuggestItem(_strdup(input), 0, suggestionCount));
suggestions.push_back(std::move(unq));
}
++suggestionsLen;
// early exit - return exact match, unless caller wants all matches
if (verbosity != Verbosity::All)
{
if (includeUnknown && (suggestionsLen == 0))
{
std::unique_ptr<SuggestItem> unq(new SuggestItem(_strdup(input), maxEditDistance + 1, 0));
suggestions.push_back(std::move(unq));
++suggestionsLen;
}
mtx.unlock();
return;
}
}
//early termination, if we only want to check if word in dictionary or get its frequency e.g. for word segmentation
if (maxEditDistance == 0)
{
if (includeUnknown && (suggestionsLen == 0))
{
std::unique_ptr<SuggestItem> unq(new SuggestItem(_strdup(input), maxEditDistance + 1, 0));
suggestions.push_back(std::move(unq));
++suggestionsLen;
}
mtx.unlock();
return;
}
hashset2.insert(stringHash(input));
int maxEditDistance2 = maxEditDistance;
int candidatePointer = 0;
//add original prefix
int inputPrefixLen = inputLen;
if (inputPrefixLen > prefixLength)
{
inputPrefixLen = prefixLength;
candidates.push_back(strndup(input, inputPrefixLen));
}
else
{
candidates.push_back(_strdup(input));
}
size_t candidatesLen = 1; // candidates.size();
while (candidatePointer < candidatesLen)
{
const char* candidate = candidates[candidatePointer++];
int candidateLen = strlen(candidate);
int lengthDiff = inputPrefixLen - candidateLen;
//save some time - early termination
//if canddate distance is already higher than suggestion distance, than there are no better suggestions to be expected
if (lengthDiff > maxEditDistance2)
{
// skip to next candidate if Verbosity.All, look no further if Verbosity.Top or Closest
// (candidates are ordered by delete distance, so none are closer than current)
if (verbosity == Verbosity::All) continue;
break;
}
auto deletesFinded = deletes.find(stringHash(candidate));
vector<const char*>* dictSuggestions = nullptr;
//read candidate entry from dictionary
if (deletesFinded != deletesEnd)
{
dictSuggestions = &deletesFinded->second;
size_t dictSuggestionsLen = dictSuggestions->size();
//iterate through suggestions (to other correct dictionary items) of delete item and add them to suggestion list
for (int i = 0; i < dictSuggestionsLen; ++i)
{
const char* suggestion = dictSuggestions->at(i);
int suggestionLen = strlen(suggestion);
if (strcmp(suggestion, input) == 0) continue;
if ((abs(suggestionLen - inputLen) > maxEditDistance2) // input and sugg lengths diff > allowed/current best distance
|| (suggestionLen < candidateLen) // sugg must be for a different delete string, in same bin only because of hash collision
|| (suggestionLen == candidateLen && strcmp(suggestion, candidate) != 0)) // if sugg len = delete len, then it either equals delete or is in same bin only because of hash collision
continue;
auto suggPrefixLen = min(suggestionLen, prefixLength);
if (suggPrefixLen > inputPrefixLen && (suggPrefixLen - candidateLen) > maxEditDistance2) continue;
//True Damerau-Levenshtein Edit Distance: adjust distance, if both distances>0
//We allow simultaneous edits (deletes) of maxEditDistance on on both the dictionary and the input term.
//For replaces and adjacent transposes the resulting edit distance stays <= maxEditDistance.
//For inserts and deletes the resulting edit distance might exceed maxEditDistance.
//To prevent suggestions of a higher edit distance, we need to calculate the resulting edit distance, if there are simultaneous edits on both sides.
//Example: (bank==bnak and bank==bink, but bank!=kanb and bank!=xban and bank!=baxn for maxEditDistance=1)
//Two deletes on each side of a pair makes them all equal, but the first two pairs have edit distance=1, the others edit distance=2.
int distance = 0;
int _min = 0;
if (candidateLen == 0)
{
//suggestions which have no common chars with input (inputLen<=maxEditDistance && suggestionLen<=maxEditDistance)
distance = max(inputLen, suggestionLen);
if (distance > maxEditDistance2 || !hashset2.insert(stringHash(suggestion)).second)
continue;
}
else if (suggestionLen == 1)
{
if (findCharLocation(input, suggestion[0]) < 0) distance = inputLen; else distance = inputLen - 1;
distance = max(inputLen, suggestionLen);
if (distance > maxEditDistance2 || !hashset2.insert(stringHash(suggestion)).second)
continue;
}
else
if ((prefixLength - maxEditDistance == candidateLen)
&& (((_min = min(inputLen, suggestionLen) - prefixLength) > 1)
&& (std::strncmp(input, suggestion, max(inputLen + 1 - _min, suggestionLen + 1 - _min)) != 0) /*(input.substr(inputLen + 1 - _min) != suggestion.substr(suggestionLen + 1 - _min))*/)
|| ((_min > 0) && (input[inputLen - _min] != suggestion[suggestionLen - _min])
&& ((input[inputLen - _min - 1] != suggestion[suggestionLen - _min])
|| (input[inputLen - _min] != suggestion[suggestionLen - _min - 1]))))
{
continue;
}
else
{
if ((verbosity != Verbosity::All && !DeleteInSuggestionPrefix(candidate, candidateLen, suggestion, suggestionLen)) ||
!hashset2.insert(stringHash(suggestion)).second) continue;
distance = distanceComparer->Compare(input, suggestion, maxEditDistance2);
if (distance < 0) continue;
}
if (distance <= maxEditDistance2)
{
suggestionCount = words[suggestion];
std::unique_ptr<SuggestItem> si(new SuggestItem(_strdup(suggestion), distance, suggestionCount));
if (suggestionsLen > 0)
{
switch (verbosity)
{
case Verbosity::Closest:
{
//we will calculate DamLev distance only to the smallest found distance so far
if (distance < maxEditDistance2)
{
suggestions.clear();
suggestionsLen = 0;
}
break;
}
case Verbosity::Top:
{
if (distance < maxEditDistance2 || suggestionCount > suggestions[0]->count)
{
maxEditDistance2 = distance;
suggestions[0] = std::move(si);
}
continue;
}
case Verbosity::All:
{
break;
}
}
}
if (verbosity != Verbosity::All) maxEditDistance2 = distance;
suggestions.push_back(std::move(si));
++suggestionsLen;
}
}//end foreach
}//end if
//add edits
//derive edits (deletes) from candidate (input) and add them to candidates list
//this is a recursive process until the maximum edit distance has been reached
if ((lengthDiff < maxEditDistance) && (candidateLen <= prefixLength))
{
//save some time
//do not create edits with edit distance smaller than suggestions already found
if (verbosity != Verbosity::All && lengthDiff >= maxEditDistance2) continue;
for (int i = 0; i < candidateLen; ++i)
{
char* tmp = new char[candidateLen];
std::memcpy(tmp, candidate, i);
std::memcpy(tmp + i, candidate + i + 1, candidateLen - 1 - i);
tmp[candidateLen - 1] = '\0';
if (hashset1.insert(stringHash(tmp)).second)
{
candidates.push_back(tmp);
++candidatesLen;
}
else
delete[] tmp;
}
}
}//end while
//sort by ascending edit distance, then by descending word frequency
if (suggestionsLen > 1)
std::sort(suggestions.begin(), suggestions.end(), [](std::unique_ptr<symspell::SuggestItem> &l, std::unique_ptr<symspell::SuggestItem> & r)
{
return r->CompareTo(*l);
});
//cleaning
//std::cout << hashset2.size() << std::endl;
auto candidatesEnd = candidates.end();
for (auto it = candidates.begin(); it != candidatesEnd; ++it)
delete[] * it;
candidates.clear();
hashset1.clear();
hashset2.clear();
mtx.unlock();
}//end if
bool LoadDictionary(char* corpus, int termIndex, int countIndex)
{
ifstream stream;
stream.open(corpus);
if (!stream.is_open())
return false;
char a, b, c;
a = stream.get();
b = stream.get();
c = stream.get();
if (a != (char)0xEF || b != (char)0xBB || c != (char)0xBF) {
stream.seekg(0);
}
SuggestionStage staging(16384);
string line;
while (getline(stream, line))
{
vector<const char*> lineParts;
std::stringstream ss(line);
std::string token;
while (std::getline(ss, token, ' ')) {
size_t len = token.size();