-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathKPNN_Function.py
executable file
·925 lines (758 loc) · 43 KB
/
KPNN_Function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
import tensorflow as tf
import pandas as pd
import numpy as np
import re
import sys
import time
import io
import os
import argparse
import random as rd
import copy
import collections
import scipy.sparse as sp_sparse
import tables
import psutil
import gc
######################
## PARSE ARGUMENTS ###
######################
parser = argparse.ArgumentParser(description='Neural network.')
# Inputs
parser.add_argument('inPathData', type=str, help='path to data file (.csv or .h5)')
parser.add_argument('inPathEdges', type=str, help='path to edges file')
parser.add_argument('inPathYs', type=str, help='path to output (ys) file')
parser.add_argument('outPath', type=str, help='path to output folder (must exist)')
parser.add_argument('--dryRun', action='store_true', help="Runs a dry run, experimental") # TODO more specific?
# Data / Normalization
parser.add_argument('--genome', type=str, help='genome in hdf5 file, is guessed by default')
parser.add_argument('--normalizedMatrix', action='store_false', help="do TPM, log of each cell")
parser.add_argument('--normalizedMatrix01', action='store_false', help="do 0-1 normalization of each gene")
parser.add_argument('--maxCells', type=float, help="How many cells can be run at once", default=100000)
# Training parameters
parser.add_argument('--iterations', type=int, help='number of iterations before automatic quit', default=100000)
parser.add_argument('--alpha', type=float, help='learning rate alpha', default=0.1)
parser.add_argument('--momentum', type=float, help='If set uses Momentum Optimzer in Tensorflow', default=0)
parser.add_argument('--lambd', type=float, help='regularization lambda for l2 loss', default=0.0)
parser.add_argument('--testSet', type=float, help='fraction of samples for test set', default=0.2)
parser.add_argument('--minibatch', type=int, help="Size of minibatch", default=1000)
# Early stopping
parser.add_argument('--disableInterrupt', action='store_true', help="when toggled removes early stopping")
parser.add_argument('--maxBreakCount', type=int, help='maximum number of non succesful runs before we stop training', default=10)
parser.add_argument('--minImprovement', type=float, help='fraction improvement over best run to save model', default=0.7)
# Dropout
parser.add_argument('--dropOut', type=float, help="Dropout Keep Probability Nodes", default=1.0)
parser.add_argument('--dropOutGenes', type=float, help="Dropout Keep Probability Genes", default=1.0)
parser.add_argument('--disableDropoutAdjust', action='store_true', help="when toggled dropout is not adjusted for child nodes of parent nodes with few childen")
# Control / shuffle /set seed /
parser.add_argument('--shuffleGenes', action='store_true', help="Shuffle gene expression")
parser.add_argument('--control', action='store_true', help="Run on control data (all genes are predictive)")
parser.add_argument('--randomSeed', type=int, help='Seed to set for numpy and tensorflow (this only works in python2 for some reason)')
# Tracking
parser.add_argument('--tfWrite', action='store_true', help="Write train and test summaries")
# Numerical gradient estimation of node importance
parser.add_argument('--numGradEpsilon', type=float, help="Epsilon of numerical gradient approximation, done on all nodes in the network", default=0.001)
parser.add_argument('--disableNumGrad', action='store_true', help="Do not perform numerical gradient estimation of node importance (saves quite some time)")
# Computing limits
parser.add_argument('--threads', type=int, help="Parallelization number of thread", default=1)
##############################################
## DEFAULT ARGUMENTS FOR TEST RUNS ###########
##############################################
print(sys.argv)
args_dry="--dryRun" in sys.argv # not implemented, maybe for later
if args_dry or sys.argv == [''] or sys.argv == [__file__]: # means that we (i) called a dry run, (ii) are within the python shell, or (iii) called the script without parameters
print("Manually setting arguments to demo data")
assert 'KPNN_INPUTS' in os.environ.keys(), 'KPNN_INPUTS needs to be defined when running KPNNs without defining required inputs, run with -h flag to read the help menue'
args = parser.parse_args([
os.environ['KPNN_INPUTS'] + "/TEST_Data.csv",
os.environ['KPNN_INPUTS'] + "/TEST_Edgelist.csv",
os.environ['KPNN_INPUTS'] + "/TEST_ClassLabels.csv",
os.environ['KPNN_TMP']
] + sys.argv[1:])
args.lambd = 0.01
args.iterations = 5
args.threads = 1
else: # script is being called from outside with proper arguments
args = parser.parse_args()
print(args)
##############################################
## RANDOM SEED ###########
##############################################
if(args.randomSeed is not None):
print("----------------\n...Setting random seed")
assert args.randomSeed != 0, "Do not set seed to 0, chose a larger integer number"
np.random.seed(args.randomSeed)
tf.random.set_random_seed(args.randomSeed)
os.environ['PYTHONHASHSEED'] = str(args.randomSeed)
rd.seed(args.randomSeed)
# #Test random seeds
# sess2 = tf.Session()
# weights = tf.Variable(tf.random_normal([1,1], dtype=tf.float64, name="Random_weights"), name="Weights",dtype=tf.float64)
# init = tf.global_variables_initializer()
# sess2.run(init)
# print("Tensorflow random number:" + str(sess2.run(weights)))
# print("Numpy choice:")
# print(np.random.choice(list(range(1000))))
# print("Numpy Binomial")
# print(np.random.binomial(list(range(1000)), 0.4)[200])
# print("Numpy Shuffle")
# x = list(range(1000))
# np.random.shuffle(x)
# print(x[5])
##############################
## SETUP ARGUMENTS ###########
##############################
print("----------------\n...Processing arguments")
# ADAM
doADAM = True
if args.momentum > 0: doADAM = False
# Dropout on nodes
doDropout = args.dropOut < 1
if doDropout:
print("Using dropout on Nodes " + str(args.dropOut))
# Dropout on genes
doDropoutGenes = args.dropOutGenes < 1
if doDropoutGenes:
print("Using dropout on Genes " + str(args.dropOutGenes))
# Figure out where to put output
if not os.path.exists(args.outPath):
os.mkdir(args.outPath)
i = 1
while os.path.exists(os.path.join(args.outPath, "run_" + str(i))):
i += 1
outPath = os.path.join(args.outPath, "run_" + str(i))
os.mkdir(outPath)
##############################
## TRACK MEMORY FUNCTION #####
##############################
open(os.path.join(outPath, "Memory.tsv"),"w").write("Step\tMemory_MB\tTime\n")
def logMem(text):
open(os.path.join(outPath, "Memory.tsv"),"a").write(text + "\t" + str(psutil.Process(os.getpid()).memory_info().rss*1.0/10**6) + "\t" + time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()) + "\n")
logMem("Start")
##############################
## LOAD ALL DATA #############
##############################
print("----------------\n...Loading Data")
# SET UP FUNCTIONS TO LOAD DATA --------------------------------------------------------------------------------------------------------------------
GeneBCMatrix = collections.namedtuple('GeneBCMatrix', ['gene_ids', 'gene_names', 'barcodes', 'matrix'])
def get_matrix_from_h5(filename, genome):
with tables.open_file(filename, 'r') as f:
try:
group = f.get_node(f.root, genome)
except tables.NoSuchNodeError:
print("That genome does not exist in this file.")
return None
gene_ids = getattr(group, 'genes').read().astype(str)
gene_names = getattr(group, 'gene_names').read().astype(str)
barcodes = getattr(group, 'barcodes').read().astype(str)
data = getattr(group, 'data').read()
indices = getattr(group, 'indices').read()
indptr = getattr(group, 'indptr').read()
shape = getattr(group, 'shape').read()
matrix = sp_sparse.csc_matrix((data, indices, indptr), shape=shape)
return GeneBCMatrix(gene_ids, gene_names, barcodes, matrix)
def indexInList(l2, l1):
ref={}
res=[]
for idx, x in enumerate(l1):
ref[x]=idx
for idx, x in enumerate(l2):
res.append(ref[x])
return(res)
# LOAD INPUT DATA --------------------------------------------------------------------------------------------------------------------
if re.match(".+csv$", args.inPathData) is not None:
df=pd.read_csv(args.inPathData, sep=",", index_col=0)
genesList_x = df.index.tolist()
assert all([genesList_x[idx] == df.index[idx] for idx in range(len(genesList_x))]) # Geneslist corresponds to column names
assert len(genesList_x) == len(set(genesList_x)) # they are unique
barcodes_x = df.columns.tolist()
fullData = sp_sparse.csc_matrix(df.as_matrix().astype("float64"))
elif re.match(".+h5$", args.inPathData) is not None:
if args.genome is None: # Gess genome from file
h5f = tables.open_file(args.inPathData, 'r')
args.genome = h5f.list_nodes(h5f.root)[0]._v_name
h5f.close()
gene_bc_matrix = get_matrix_from_h5(args.inPathData, args.genome)
barcodes_x = gene_bc_matrix.barcodes.tolist()
genesList_x = gene_bc_matrix.gene_names.tolist()
fullData = gene_bc_matrix.matrix.astype("float64")
else:
assert False, "No adequate input data provided"
genesList_x = [x + "_gene" for x in genesList_x]
logMem("Data loaded")
# LOAD Ys and match barcodes to input data --------------------------------------------------------------------------------------------------------------------
file_y=pd.read_csv(args.inPathYs, sep=",")
barcodes_y = file_y["barcode"].tolist()
# match barcodes:
barcodes = sorted(set(barcodes_y) & set(barcodes_x))
assert len(barcodes) == len(set(barcodes)), "BARCODES ARE NOT UNIQUE!"
print("Number of Barcodes found in Y but not X: " + str(len(set(barcodes_y) - set(barcodes_x))))
print("Number of Barcodes used: " + str(len(barcodes)))
file_y=file_y.loc[indexInList(barcodes, barcodes_y)]
open(os.path.join(outPath, "barcodes.txt"),"w").write("\n".join(barcodes))
# LOAD EDGE LIST and match gene list with input data --------------------------------------------------------------------------------------------------------------------
edgelistFile=pd.read_csv(args.inPathEdges, sep=",")
assert len(set([edgelistFile['child'][i] + "_" + edgelistFile['parent'][i] for i in range(edgelistFile.shape[0])])) == edgelistFile.shape[0], "Edgelist contains duplicated elements"
genesList_edges = list(set(edgelistFile['child'].tolist()) - set(edgelistFile['parent'].tolist()))
genesList = sorted(set(genesList_x) & set(genesList_edges))
print("Number of Genes used: " + str(len(genesList)))
assert len(genesList) == len(set(genesList)), "genesList non unique!"
genesListOrig = copy.copy(genesList)
edgelistFile = edgelistFile[edgelistFile['child'].isin(genesList) | edgelistFile['child'].isin(edgelistFile['parent'])]
open(os.path.join(outPath, "genesList.txt"),"w").write("\n".join(genesList))
# NETWORK OUTPUTS matched between Ys and edgelist --------------------------------------------------------------------------------------------------------------------
outputs_y = sorted(set(file_y.columns.tolist()) - set(["barcode"]))
outputs_edges = sorted(set(edgelistFile['parent'].tolist()) - set(edgelistFile['child'].tolist()))
outputs = sorted(set(outputs_y) & set(outputs_edges))
print("Number of Outputs used: " + str(len(outputs)) + " --> " + ",".join(outputs))
print("\tClass labels: " + ",".join(outputs_y))
print("\tNetwork outputs: " + ",".join(outputs_edges))
assert len(outputs) > 0, "No outputs fitting between y table and edgelist"
assert len(outputs) == len(set(outputs)), "outputs non unique!"
open(os.path.join(outPath, "outputs.txt"),"w").write("\n".join(outputs))
# MAKE SURE EDGES MAKE UP DAG --------------------------------------------------------------------------------------------------------------------
outputs_edges_missed = list(set(outputs_edges) - set(outputs))
input_edges_missed = list(set(set(edgelistFile['child'].tolist()) - set(edgelistFile['parent'].tolist())) - set(genesList))
while len(outputs_edges_missed) > 0 or len(input_edges_missed) > 0:
edgelistFile = edgelistFile[~edgelistFile['parent'].isin(outputs_edges_missed)]
edgelistFile = edgelistFile[~edgelistFile['child'].isin(input_edges_missed)]
# These are the parents that are not children and also not in outputs (leaves with only out edges - which can only be outputs)
outputs_edges_missed = list(set(set(edgelistFile['parent'].tolist()) - set(edgelistFile['child'].tolist())) - set(outputs))
# These are the children that are not parents and also not in the gene list (leaves with only in edges - which can only be genes)
input_edges_missed = list(set(set(edgelistFile['child'].tolist()) - set(edgelistFile['parent'].tolist())) - set(genesList))
for x in outputs:
assert x in edgelistFile['parent'].tolist(), x + " missing from edgelist"
edgelistFile.to_csv(os.path.join(outPath,"edges.tsv"), index=False)
# TRANFORM Ys to fit to our data --------------------------------------------------------------------------------------------------------------------
fullY = np.transpose(file_y[outputs].as_matrix()).astype("float64")
# GET RELEVANT INPUT DATA FROM FULL DATASET --------------------------------------------------------------------------------------------------------------------
fullData = fullData[:,indexInList(barcodes, barcodes_x)]
# GENERATE CONTROL DATA --------------------------------------------------------------------------------------------------------------------
if args.control:
# edgelist
edgelistFile = edgelistFile.loc[~edgelistFile['parent'].isin(outputs[1:])]
edgelistFile.parent[edgelistFile['parent'].isin(outputs[0:1])] = "output"
outputs = ["output"]
# Set up fullY
size_ds = int(min(fullY.shape[1], args.minibatch*2)/2) * 2 # this must be devidable by two
fullY = fullY[0:1,:size_ds]
fullY[:,:size_ds//2] = 1
fullY[:,size_ds//2:] = 0
# set up Barcodes
barcodes = barcodes[:size_ds]
barcodes_x = barcodes
# Sum up expression to draw from
control_grp1 = np.asarray(fullData.sum(1))[:,0].astype("int64")
control_grp2 = (control_grp1 * np.random.choice([0.5, 2], control_grp1.shape[0])).astype("int64") # add two fold up down regulation everywhere
# Generate full data
control_grp1_sum = control_grp1.sum()
control_grp2_sum = control_grp2.sum()
fullData_colSums = fullData.sum(0)
fullData_control = np.zeros((control_grp1.shape[0],size_ds), dtype=int)
assert fullData_control.shape[1] <= fullData.shape[1]
for i2 in range(size_ds):
if int(fullY[0,i2]) == 1:
fullData_control[:,i2] = np.random.binomial(control_grp1, fullData_colSums[0,i2]/control_grp1_sum)
else:
fullData_control[:,i2] = np.random.binomial(control_grp2, fullData_colSums[0,i2]/control_grp2_sum)
fullData = sp_sparse.csc_matrix(fullData_control.astype("float64"))
# Normalize log TPM (by columms) --------------------------------------------------------------------------------------------------------------------
if args.normalizedMatrix:
for i in range(fullData.shape[1]):
x=fullData.data[fullData.indptr[i]:fullData.indptr[i+1]]
fullData.data[fullData.indptr[i]:fullData.indptr[i+1]]=x/x.sum()*1e6
fullData = fullData.log1p()
# Extract relevant genes --------------------------------------------------------------------------------------------------------------------
fullData = fullData[indexInList(genesList, genesList_x),:]
# Define train and test data --------------------------------------------------------------------------------------------------------------------
test_idx = []
val_idx = []
train_idx = []
# If we have defined train/test/validation set in the y_file then use those instead
if "Set" in list(file_y): # if some elements are defined
assert file_y["barcode"].tolist() == barcodes
if set(file_y['Set'].tolist()) == set(['train', 'test', 'val']): # if all sets are defined
print("Setting train - val - test sets from y-file")
test_idx = indexInList(file_y[file_y['Set']=="test"]['barcode'].tolist(), barcodes)
val_idx = indexInList(file_y[file_y['Set']=="val"]['barcode'].tolist(), barcodes)
train_idx = indexInList(file_y[file_y['Set']=="train"]['barcode'].tolist(), barcodes)
elif "test" in file_y['Set'].tolist(): # if only test set is defined
print("Setting test set from y-file")
test_idx = indexInList(file_y[file_y['Set']=="test"]['barcode'].tolist(), barcodes)
else: # if nothing is defined
print("Found Set column in Y-file but no mention of test set")
# Was the test set defined?
test_def = test_idx != []
# if the previous step didn't define everything, than randomly pick elements
if len(test_idx) + len(val_idx) + len(train_idx) != len(barcodes):
# Number of test cells (this is relative to the full number of cells)
nrTestCells = int(len(barcodes)*args.testSet)
assert isinstance(args.maxCells, int)
if nrTestCells > args.maxCells: nrTestCells = args.maxCells
# Group cells by output
test_groups = ["".join([str(i) for i in x]) for x in np.transpose(fullY.astype("int")).tolist()]
test_groups_list={}
for test_grp in set(test_groups):
test_groups_list[test_grp] = []
# Go through each group, identify indices for this group
for idx, x in enumerate(test_groups):
if not idx in test_idx: # if the test set is defined, do not include those barcodes in the further steps
test_groups_list[x].append(idx)
# Split indices into test and train set
print("OUTPUTS:")
print(outputs)
test_idx = [] if not test_def else test_idx # if the test_idx is already defined then we keep this
val_idx = []
train_idx = []
for test_grp in sorted(set(test_groups)):
# Draw a number from all indices for test and validation set, then draw from those for the validation set only
# if the test set is predefined, then we still draw barcodes for it, but then do not use them
test_and_val_group_N = int(((len(test_groups_list[test_grp]) + 0.0)/len(test_groups)) * nrTestCells * 2)
test_and_val_barcodes=np.random.choice(test_groups_list[test_grp], test_and_val_group_N, replace=False).tolist()
val_idx_x = np.random.choice(test_and_val_barcodes, int(test_and_val_group_N/2), replace=False).tolist()
test_idx_x = sorted(set(test_and_val_barcodes) - set(val_idx_x)) if not test_def else [] # if the test indices are already defined, then we add nothing
train_idx_x = sorted(set(test_groups_list[test_grp]) - set(val_idx_x) - set(test_idx_x))
print(test_grp + ": test: " + str(len(test_idx_x)) + " val: " + str(len(val_idx_x)) + " train: " + str(len(train_idx_x)) + " of: " + str(len(test_groups_list[test_grp])))
assert len(test_idx_x) + len(val_idx_x) + len(train_idx_x) == len(test_groups_list[test_grp])
assert len(set(test_idx_x) & set(val_idx_x)) == 0
assert len(set(test_idx_x) & set(train_idx_x)) == 0
assert len(set(train_idx_x) & set(val_idx_x)) == 0
# Add up lists (across test_groups)
test_idx = test_idx + test_idx_x
val_idx = val_idx + val_idx_x
train_idx = train_idx + train_idx_x
# Final assertions for the split
assert len(test_idx) + len(val_idx) + len(train_idx) == len(barcodes), "Error assigning test, training, and validation set"
assert len(set(test_idx) & set(val_idx)) == 0, "Error assigning test, training, and validation set"
assert len(set(test_idx) & set(train_idx)) == 0, "Error assigning test, training, and validation set"
assert len(set(train_idx) & set(val_idx)) == 0, "Error assigning test, training, and validation set"
# print("Final: " + "test: " + str(len(test_idx)) + " val: " + str(len(val_idx)) + " train: " + str(len(train_idx)) + " of: " + str(len(barcodes)))
# assign test and training set
y_train = fullY[:,train_idx]
y_val = fullY[:,val_idx]
y_test = fullY[:,test_idx]
open(os.path.join(outPath, "barcodes_test.txt"),"w").write("\n".join([barcodes[i] for i in test_idx]))
x_train = fullData[:,train_idx]
x_val = fullData[:,val_idx]
x_test = fullData[:,test_idx]
# print result of draws)
print("Training Ys \t(total " + str(y_train.shape[1]) + "): \t" + "(== 1) - ".join(outputs) + "(== 1): \t" + " - ".join([str(y_train[i,:].sum()) for i in range(y_train.shape[0])]))
print("Validation Ys \t(total " + str(y_test.shape[1]) + "): \t" + "(== 1) - ".join(outputs) + "(== 1): \t" + " - ".join([str(y_test[i,:].sum()) for i in range(y_test.shape[0])]))
print("Testing Ys \t(total " + str(y_val.shape[1]) + "): \t" + "(== 1) - ".join(outputs) + "(== 1): \t" + " - ".join([str(y_val[i,:].sum()) for i in range(y_val.shape[0])]))
# Normalize to 0-1 for each row (input/gene) --------------------------------------------------------------------------------------------------------------------
if args.normalizedMatrix01:
x_train = x_train.tocsr()
x_val = x_val.tocsr()
x_test = x_test.tocsr()
# Go through all rows
assert x_train.shape[0] == x_val.shape[0]
assert x_train.shape[0] == x_test.shape[0]
for i in range(fullData.shape[0]):
x_train_row=x_train.data[x_train.indptr[i]:x_train.indptr[i+1]]
x_val_row=x_val.data[x_val.indptr[i]:x_val.indptr[i+1]]
x_test_row=x_test.data[x_test.indptr[i]:x_test.indptr[i+1]]
# if all cells in this row have a value (can be 0)
if x_train_row.shape[0] == x_train.shape[1]:
x_train_row_min=x_train_row.min()
x_train_row=x_train_row-x_train_row_min
x_val_row=x_val_row-x_train_row_min
x_test_row=x_test_row-x_train_row_min
if x_train_row.shape[0] > 0: # if there are values in this row in the training data, devide by max of training data.
x_train_row_max = x_train_row.max()
x_train_row=x_train_row/x_train_row_max
x_val_row=x_val_row/x_train_row_max
x_test_row=x_test_row/x_train_row_max
else:
if x_val_row.shape[0] > 0: # Else but if there are values in validation, then normalize test data separately
if x_val_row.shape[0] == x_val.shape[1]: # if all validation data have values, substract minimum (very unlikely but for completeness sake)
x_val_row=x_val_row-x_val_row.min()
x_val_row=x_val_row/x_val_row.max()
if x_test_row.shape[0] > 0: # Else but if there are values in test, then normalize test data separately
if x_test_row.shape[0] == x_test.shape[1]: # if all test data have values, substract minimum (very unlikely but for completeness sake)
x_test_row=x_test_row-x_test_row.min()
x_test_row=x_test_row/x_test_row.max()
x_train.data[x_train.indptr[i]:x_train.indptr[i+1]]=x_train_row
x_val.data[x_val.indptr[i]:x_val.indptr[i+1]]=x_val_row
x_test.data[x_test.indptr[i]:x_test.indptr[i+1]]=x_test_row
# Get weight matrix FUNCTION --------------------------------------------------------------------------------------------------------------------
def weightMatrixFromYs(ys_input):
matrix_groups = ["".join([str(i) for i in x]) for x in np.transpose(ys_input.astype("int")).tolist()]
matrix_groups_weight={}
# get factor to multiply by for each group
for matrix_grp in sorted(set(matrix_groups)):
matrix_groups_weight[matrix_grp] = (1.0/((matrix_groups.count(matrix_grp) + 0.0) / len(matrix_groups))) / len(set(matrix_groups))
# create a numpy array with the same dimensions as the input
return(np.array([[matrix_groups_weight[x] for x in matrix_groups],]* ys_input.shape[0]))
# Prepare TEST data --------------------------------------------------------------------------------------------------------------------
x_val = x_val.toarray()
y_val_weights = weightMatrixFromYs(y_val)
x_test = x_test.toarray()
y_test_weights = weightMatrixFromYs(y_test)
# SHUFFLE DATA --------------------------------------------------------------------------------------------------------------------
if args.shuffleGenes:
rd.shuffle(genesList)
print("Genes were shuffled")
if genesList[1] != genesListOrig[1]:
print("Genes were indeed shuffled")
# FINISHED DATA SETUP --------------------------------------------------------------------------------------------------------------------
logMem("Setup data")
##############################
## MINIBATCH SIZE ############
##############################
# MINIBATCH SIZE ADJUSTMENT TO MAKE THEM EQUAL SIZE (otherwise the last minibatch is very small)
if args.minibatch == 0 or args.minibatch > x_train.shape[1]:
args.minibatch = x_train.shape[1]
else:
args.minibatch = int(x_train.shape[1]//(x_train.shape[1]//(args.minibatch)))
####################################
#### RANK NODES IN NETWORK RANKS ###
####################################
nodesRanks = []
edges_ranks = copy.deepcopy(edgelistFile)
edges_ranks_rows = edges_ranks.shape[0] + 1
i = 1
# Cycle through edgelist and add leaves to nodesRanks, thus building up nodesRanks from the bottom
while edges_ranks.shape[0] < edges_ranks_rows: # stop when no nodes (leaves) were added to the nodesRanks, edges_ranks_rows is edges_ranks.shape[0] at the last iteration
edges_ranks_rows = edges_ranks.shape[0]
leaves = sorted(set(edges_ranks['child'].tolist()) - set(edges_ranks['parent'].tolist())) # Nodes that are only children (not parents) are leaves
if i > 1:
nodesRanks.extend(leaves) # leaves are added to the nodes ranks
else:
assert set(leaves).issubset(set(genesListOrig)), "Some genes not found in the data!"
edges_ranks = edges_ranks.loc[~edges_ranks['child'].isin(leaves)] # remove interactions of leaves
i += 1
assert edges_ranks.shape[0] == 0, "Edgelist is circular!" # if there are edges remaining after the above
# add output nodes to the list
nodesRanks.extend(set(edgelistFile['parent'].tolist()) - set(edgelistFile['child'].tolist()))
###################################
#### MAP CONNECTIONS IN NETWORK ###
###################################
print("----------------\n...Mapping connections")
# edge list (for each node, get all the children (as string) in a list)
edges={}
for index, row in edgelistFile.iterrows():
if(row['parent'] in edges.keys()):
edges[row['parent']] = edges[row['parent']] + [row['child']]
else:
edges[row['parent']] = [row['child']]
# create nodeGeneMap and nodeNodeMap (for each node, has a list of all children genes / nodes in a list (as indices of genesList / nodesRanks))
# also map nodes to weights
nodeGeneMap = {} # contains the gene from each node
nodeNodeMap = {} # contains the nodes from each node
weightMap = {} # the idx of the weights used (for each node a list of length genes + nodes)
iIt = 0
for iNode in nodesRanks:
nodeGeneMap[iNode] = []
nodeNodeMap[iNode] = []
weightMap[iNode]=[]
for eg in edges[iNode]:
weightMap[iNode].append(iIt)
iIt += 1
if eg in genesList:
nodeGeneMap[iNode].append(genesList.index(eg))
elif eg in nodesRanks:
nodeNodeMap[iNode].append(nodesRanks.index(eg))
else:
sys.exit(eg + " was not found in the nodes or the genes! Exiting")
#print((eg + " was not found in the nodes or the genes! Exiting"))
# Weights
weightTotalLength = sum([len(weightMap[i]) for i in nodesRanks])
# Assertions for this set up
assert max([max(x) for x in weightMap.values()]) == weightTotalLength - 1
for iNode in nodesRanks:
tarLength = len(nodeGeneMap[iNode]) + len(nodeNodeMap[iNode])
assert tarLength == len(weightMap[iNode])
assert tarLength == len(edges[iNode])
# The node (protein) neighbors of iNode are all neighbors of iNode (edges[iNode]) that are nodes
assert len(nodeNodeMap[iNode]) == len(list(set(edges[iNode]) & set([nodesRanks[i] for i in nodeNodeMap[iNode]])))
# The genes (input) neighbors of iNode are all neighbors of iNode (edges[iNode]) that are genes
assert len(nodeGeneMap[iNode]) == len(list(set(edges[iNode]) & set([genesList[i] for i in nodeGeneMap[iNode]])))
# DONE
logMem("Setup Network")
#########################
#### TF NETWORK SETUP ###
#########################
print("----------------\n...Defining computational graph")
# Dropout Keep probability --------------------------------------------------------------------------------------------------------------------
dropoutKP_NODES = tf.cast(tf.placeholder_with_default(input=1.0, shape=[], name="dropoutKP_NODES"), tf.float64)
dropoutKP_GENES = tf.cast(tf.placeholder_with_default(input=1.0, shape=[], name="dropoutKP_GENES"), tf.float64)
# OUTPUT/Y --------------------------------------------------------------------------------------------------------------------
y_true = tf.placeholder(name="y_true", shape=[len(outputs),None],dtype=tf.float64)
y_weights = tf.placeholder(name="y_weights", shape=[len(outputs),None],dtype=tf.float64)
# INPUT/Genes --------------------------------------------------------------------------------------------------------------------
with tf.name_scope("Input_genes"):
genesOrig = tf.placeholder(name="genes",shape=[x_train.shape[0], None],dtype=tf.float64)
if doDropoutGenes:
genes = tf.nn.dropout(x=genesOrig, keep_prob=dropoutKP_GENES)
else:
genes = genesOrig
# Nodes to approximate numerical gradients --------------------------------------------------------------------------------------------------------------------
numApproxPlus = tf.placeholder_with_default(input="", shape=[], name="NumericalApproximationUp_Node")
numApproxMinus = tf.placeholder_with_default(input="", shape=[], name="NumericalApproximationDown_Node")
numApproxVec = tf.reshape(tf.cast(tf.tile([args.numGradEpsilon], [tf.shape(genesOrig)[1]],), tf.float64), [1, tf.shape(genesOrig)[1]])
# Edge weights and intercept --------------------------------------------------------------------------------------------------------------------
with tf.name_scope("weights"):
weights = tf.Variable(tf.random_normal([weightTotalLength,1], dtype=tf.float64, name="Random_weights"), name="Weights", dtype=tf.float64)
tf.summary.scalar("mean", tf.reduce_mean(weights))
tf.summary.histogram("histogram", weights)
with tf.name_scope("intercept"):
interceptWeights = tf.Variable(tf.random_normal([len(nodesRanks)], dtype=tf.float64, name="Random_Intercepts"), name="Intercepts", dtype=tf.float64)
tf.summary.scalar("mean", tf.reduce_mean(interceptWeights))
tf.summary.histogram("histogram", interceptWeights)
# Hook up the nodes --------------------------------------------------------------------------------------------------------------------
nodes = {}
nodes_loss = {}
genes_unstacked = tf.unstack(genes)
for n in nodesRanks:
#print(n)
with tf.name_scope(n):
# Z
weightsX = tf.slice(weights, [weightMap[n][0],0],[len(weightMap[n]),1])
features = tf.stack([genes_unstacked[x] for x in nodeGeneMap[n]] + [nodes[nodesRanks[nidx]] for nidx in nodeNodeMap[n]])
z = tf.matmul(tf.transpose(weightsX), features)
z = z + tf.slice(interceptWeights, [nodesRanks.index(n)],[1])
if not n in outputs:
# Sigmoid, not on output nodes --> to be used in sigmoid_cross_entropy_with_logits function
nodes[n] = tf.nn.sigmoid(z)
else:
nodes[n] = z
# Numerical gradient approximation for this node?
nodes[n] = tf.cond(tf.equal(numApproxPlus, tf.constant(n)), lambda: nodes[n] + numApproxVec, lambda: nodes[n])
nodes[n] = tf.cond(tf.equal(numApproxMinus, tf.constant(n)), lambda: nodes[n] - numApproxVec, lambda: nodes[n])
# unstack for later (parent nodes)
nodes[n] = tf.unstack(nodes[n])[0]
# Dropout, not on output nodes
if doDropout and not n in outputs:
print("dropout on " + n)
# The next code tests if the parents of node n have more than one children. If this is not the case, then we do use dropout
parents = edgelistFile[edgelistFile['child'].str.match("^" + n + "$")]['parent'].tolist()
children = len(set(edgelistFile[edgelistFile['parent'].isin(parents)]["child"].tolist()))
if children == 1:
print("Skipping dropout for " + n)
elif children == 2 and not args.disableDropoutAdjust:
print(n + "'s parents have 2 children - dropout adjusted to 0.9 or " + str(args.dropOut))
nodes[n] = tf.nn.dropout(x=nodes[n], keep_prob=tf.maximum(dropoutKP_NODES, 0.9))
elif children == 3 and not args.disableDropoutAdjust:
print(n + "'s parents have 3 children - dropout adjusted to 0.7 or " + str(args.dropOut))
nodes[n] = tf.nn.dropout(x=nodes[n], keep_prob=tf.maximum(dropoutKP_NODES, 0.7))
else:
nodes[n] = tf.nn.dropout(x=nodes[n], keep_prob=dropoutKP_NODES)
# DONE with Network
logMem("Setup Tensorflow NW")
# Follow cost and other parameters
with tf.name_scope("regularizationCost"):
weightsToPenalize = weights
regularization = (args.lambd * tf.nn.l2_loss(weightsToPenalize)) / tf.cast(tf.shape(y_true)[1], tf.float64)
tf.summary.scalar("value", regularization)
with tf.name_scope("Xentropy"):
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=tf.stack([nodes[x] for x in outputs]), labels=y_true) * y_weights
tf.summary.scalar("mean", tf.reduce_mean(xentropy))
tf.summary.histogram("histogram", xentropy)
with tf.name_scope("Loss"):
loss = tf.reduce_mean(xentropy) + regularization
tf.summary.scalar("value", loss)
with tf.name_scope("y_hat"):
y_hat = tf.nn.sigmoid(tf.stack([nodes[x] for x in outputs]))
with tf.name_scope("error"):
error = tf.abs(y_true - y_hat) * y_weights
tf.summary.scalar("mean", tf.reduce_mean(error))
with tf.name_scope("accuracy"):
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.round(y_hat), y_true), tf.float64))
tf.summary.scalar("mean", tf.reduce_mean(accuracy))
# Define training optimizer
with tf.name_scope("Optimizer"):
if doADAM:
optimizer = tf.train.AdamOptimizer(learning_rate=args.alpha)
else:
optimizer = tf.train.MomentumOptimizer(learning_rate=args.alpha, momentum=args.momentum)
train = optimizer.minimize(loss)
# DONE
logMem("Setup Tensorflow")
###################
#### INITIALIZE ###
###################
print("----------------\n...Initializing")
init = tf.global_variables_initializer()
sess = tf.Session(config=tf.ConfigProto(inter_op_parallelism_threads=args.threads,intra_op_parallelism_threads=args.threads))
sess.run(init)
logMem("Initiated Tensorflow")
#############################
#### PREPARE OUTPUT FILES ###
#############################
print("----------------\n...Preparing outputs")
sep=","
# Saver (saves models during training)
saver = tf.train.Saver()
# Summary writers (Tensorboard)
merged = tf.summary.merge_all()
if args.tfWrite:
train_writer = tf.summary.FileWriter(outPath + '/train', sess.graph)
val_writer = tf.summary.FileWriter(outPath + '/val', sess.graph)
# Cost output (Track progress)
costFile = open(os.path.join(outPath, "tf_cost.csv"),"w")
costFile.write("iteration,train,validation,error,accuracy,breakCounter" + "\n")
costFile.close()
# Settings
settingsFile = open(os.path.join(outPath, "tf_settings.csv"),"w")
settingsDict = vars(args)
for argsKey in settingsDict.keys():
settingsFile.write(argsKey + sep + str(settingsDict[argsKey]) + "\n")
settingsFile.write("python" + sep + sys.version.replace("\n", " ") + "\n")
settingsFile.close()
#################
#### TRAINING ###
#################
print("----------------\n...Starting training")
# training iterations
trainCost = []
valErr = []
valErrCurrentMin = 1
breakCounter = 0
start = time.time()
logMem("Prepared Training")
for i in [xx + 1 for xx in range(args.iterations)]:
# DEFINE MINIBATCH
idxs = list(range(x_train.shape[1]))
np.random.shuffle(idxs)
# generates list of lists, each containing the indices used
minibatch_list = [idxs[j:min(j+args.minibatch, len(idxs)-1)] for j in list(range(0, x_train.shape[1], args.minibatch))]
# Remove list elements without indices (can happen - not sure why TODO)
minibatch_list_length = [len(x) for x in minibatch_list]
if 0 in minibatch_list_length:
minibatch_list_idx_remove = minibatch_list_length.index(0)
del minibatch_list[minibatch_list_idx_remove]
# TRAIN BY MINIBATCH
for i_batch in range(len(minibatch_list)):
# First train for this epoch
batch_idx=minibatch_list[i_batch]
x_batch=x_train[:,batch_idx].toarray()
y_batch=y_train[:,batch_idx]
y_batch_weights = weightMatrixFromYs(y_batch)
if i > 1: # The first iteration reflects initiation parameters (no training done)
sess.run(train, {genesOrig:x_batch, y_true:y_batch, dropoutKP_NODES: args.dropOut, dropoutKP_GENES: args.dropOutGenes, y_weights:y_batch_weights})
if i < 10 or i % 10 == 0:
print("\nTraining epoch: " + str(i))
# Loss, error, etc on training and validation set
lossRes, trainClassProb, trainWriteContent = sess.run([loss, y_hat, merged], {genesOrig:x_batch, y_true:y_batch, dropoutKP_NODES: args.dropOut, dropoutKP_GENES: args.dropOutGenes, y_weights:y_batch_weights})
lossValRes, valWriteContent, valerror, valAccuracy = sess.run([loss, merged, error,accuracy], {genesOrig:x_val, y_true:y_val, y_weights:y_val_weights})
valErrRun = valerror.mean()
# Tensorboard output
if args.tfWrite:
train_writer.add_summary(trainWriteContent, i)
val_writer.add_summary(valWriteContent, i)
# Early stopping
if i > 10 and not args.disableInterrupt:
if trainCost[-1] - lossRes < 0.00001: # if the general error goes up or stays equal
breakCounter += 1
if any(valErrPrevious + 0.05 < valErrRun for valErrPrevious in valErr): # if val error goes up
breakCounter += 1
# print and write progress)
print("Mean loss: " + "%.4f" % lossRes + " Validation loss: " + "%.4f" % lossValRes + " Validation error: " + str(valErrRun))
print("Break Counter = " + str(breakCounter))
costFile = open(os.path.join(outPath, "tf_cost.csv"),"a")
costFile.write(str(i) + sep + str(lossRes) + sep + str(lossValRes) + sep + str(valErrRun) + sep + str(valAccuracy.mean()) + sep + str(breakCounter) + "\n")
costFile.close()
if breakCounter > args.maxBreakCount:
break
# Save model
if i > 2 and (valErrRun < 0.2 and valErrCurrentMin * args.minImprovement > valErrRun):
breakCounter = 0
saver.save(sess, os.path.join(outPath,'best-model'))
valErrCurrentMin = valErrRun
print("Model saved at iteration " + str(i) + " at Validation error: " + str(valErrRun))
trainCost.append(lossRes)
valErr.append(valErrRun)
# DONE
print("----------------\n...Training done:")
print(start - time.time())
logMem("Trained Tensorflow")
#########################################
#### OUTPUT WEIGHTS, yHat, yTrue, ... ###
#########################################
# Load last model
if os.path.exists(os.path.join(outPath,'best-model.meta')):
saver.restore(sess, os.path.join(outPath,'best-model'))
print("Model restored from " + outPath)
logMem("Loaded Best Model")
# Write out Test Error with loaded model
testErrNumGrad = sess.run(error, {genesOrig:x_test, y_true:y_test, y_weights:y_test_weights}).mean()
print("Test Error before Numerical Gradient = " + str(testErrNumGrad))
open(os.path.join(outPath, "tf_NumGradTestError.txt"),"w").write("NumGradTestError" + "\n" + str(testErrNumGrad))
# Write y hat to file
test_y_hat = sess.run(y_hat, {genesOrig:x_test, y_true:y_test})
print("----------------\n...Writing y hat to file")
test_y_hat_file = open(os.path.join(outPath, "tf_yHat_test.csv"),"w")
test_y_hat_file.write(",".join(outputs) + "\n")
test_y_hat_file.write(pd.DataFrame(np.transpose(test_y_hat)).to_csv(header=False, index=False))
test_y_hat_file.close()
# Write y true to file
test_y_true_file = open(os.path.join(outPath, "tf_yTrue_test.csv"),"w")
test_y_true_file.write(",".join(outputs) + "\n")
test_y_true_file.write(pd.DataFrame(np.transpose(y_test.astype("int"))).to_csv(header=False, index=False))
test_y_true_file.close()
logMem("Tensorflow results accuracy")
# Weight output
sep = ","
weightRes, interceptRes = sess.run([weights, interceptWeights])
print("weights: " + "%.4f" % np.abs(weightRes).mean() + " intercepts: " + "%.4f" % np.abs(interceptRes).mean())
weightFile = open(os.path.join(outPath, "tf_weights.csv"),"w")
weightFile.write("parent,child,weight" + "\n")
for n in nodesRanks:
i = 0
for targetGene in nodeGeneMap[n]:
weightFile.write(n + sep + genesList[targetGene] + sep + str(weightRes[weightMap[n][i]].tolist()[0]) + "\n")
i += 1
for targetProtein in nodeNodeMap[n]:
weightFile.write(n + sep + nodesRanks[targetProtein] + sep + str(weightRes[weightMap[n][i]].tolist()[0]) + "\n")
i += 1
assert i == len(weightMap[n])
weightFile.write(n + sep + "Intercept" + sep + str(interceptRes[nodesRanks.index(n)]) + "\n")
weightFile.close()
# Node activations for each sample of each output
nacs_dict={}
for i,oo in enumerate(outputs):
nacs = sess.run(nodes, {genesOrig:x_test[:,np.where(y_test[i,:] == 1)[0]]})
nacs_dict[oo] = [x.mean() for x in nacs.values()]
nodeActFile = open(os.path.join(outPath, "tf_NodeActivations.csv"),"w")
sep = ","
nodeActFile.write("Node" + sep + sep.join(outputs) + "\n")
for i,n in enumerate(nodes.keys()):
nodeActFile.write(n + sep + sep.join([str(nacs_dict[oo][i]) for oo in outputs]) + "\n")
nodeActFile.close()
###########################################
#### NUMERICAL GRADIENT NODE IMPORTANCE ###
###########################################
if not args.disableNumGrad:
print("----------------\n...Starting Numerical Gradient estimation:")
print(start - time.time())
#numGrad_yWeights = np.array([[1.0 for x in range(y_test.shape[1])],]* y_test.shape[0]) # REMOVE IF HAS NOT FAILED
# For each node, get y_hat with pos and neg perturbation (numApproxPlus/numApproxMinus)
# calculate mean across
numAgg = 0
nodesNumGrad = [x for x in nodesRanks if not x in outputs]
for n in nodesNumGrad:
print("Calculating numerical gradient for: " + n)
logMem("Tensorflow numgrad " + n)
res = (sess.run(y_hat, {genesOrig:x_test, y_true:y_test, numApproxPlus: n}) - sess.run(y_hat, {genesOrig:x_test, y_true:y_test, numApproxMinus: n}))/(2*args.numGradEpsilon)
res = res.mean(1)
if numAgg.__class__ != np.ndarray:
numAgg = res
else:
numAgg = np.column_stack((numAgg, res))
# Write means to file
sep = ","
numGradFile = open(os.path.join(outPath, "tf_NumGradMeans.csv"),"w")
numGradFile.write("Node" + sep + sep.join(outputs) + "\n")
for i,n in enumerate(nodesNumGrad):
numGradFile.write(n + sep + sep.join([str(x) for x in numAgg[:,i].tolist()]) + "\n")
numGradFile.close()
# done with NUMGRAD
logMem("Tensorflow numgrad done")
##################
#### FINISH UP ###
##################
print("----------------\n...Time passed:")
print(start - time.time())
sess.close()
print("\n\n\t\t\tKPNN TRAINING COMPLETED SUCCESSFULLY\n\n")
print("\nResults are exported to " + outPath +"\n\n")