-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathalgorithms.py
613 lines (421 loc) · 18.4 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# %%
import math
from collections import defaultdict
from typing import Mapping, NamedTuple
import seaborn as sns
import torch
from topologies import *
"""
This file contains simulation code for several decentralized algorithms.
We use those in the random quadratic experiments
"""
# %%
sns.set_style("darkgrid")
# %%
def spectral_gap(matrix):
abs_eigenvalues = sorted(torch.abs(torch.eig(matrix).eigenvalues[:, 0]))
return abs_eigenvalues[-1] - abs_eigenvalues[-2]
#%%
class QuadraticsTask:
"""avg_i ||A_i x - b_i||^2"""
def __init__(
self, num_workers: int, d: float, zeta2: float, sgd_noise_variance: float = 0.0
):
self.d = d
self.zeta2 = zeta2
self.sgd_noise_variance = sgd_noise_variance
self.A = torch.stack(
[
1 / math.sqrt(num_workers) * torch.eye(d) * (i + 1)
for i in range(0, num_workers)
]
)
self.B = torch.stack(
[
torch.randn(d, 1) * math.sqrt(zeta2) / (i + 1)
for i in range(0, num_workers)
]
)
# Flatten all the parameters
aa = self.A.view(-1, d)
bb = self.B.view(-1, 1)
self.target, _ = torch.solve(aa.T @ bb, aa.T @ aa)
self.target = self.target.unsqueeze(0)
self.num_workers = num_workers
self.name = f"Non-idd quadratics (ζ^2={zeta2})"
self.error_metric = "Mean L2 distance from optimum"
def _grad(A, B, state, sigma):
AXmB = torch.einsum("nab,nbo->nao", A, state) - B
grad = torch.einsum("njk,njf->nkf", A, AXmB)
grad += torch.randn_like(state) * sigma
return grad
self._grad = torch.jit.script(_grad)
def init_state(self):
return torch.zeros(self.num_workers, self.d, 1) + 1
def grad(self, state):
return self._grad(self.A, self.B, state, torch.tensor(math.sqrt(self.sgd_noise_variance / self.d)))
def error(self, state):
"""Squared L2 norm / distance from the target"""
return torch.mean((state - self.target) ** 2)
class OneMinusOneTask:
def __init__(
self, num_workers: int
):
self.num_workers = num_workers
self.name = f"One and minus one at ends of a strip"
self.error_metric = "Avg. sq. L2 distance from optimum"
def init_state(self):
return torch.ones(self.num_workers, 1, 1) * torch.randn(size=[1,1,1])
# return torch.randn(size=[self.num_workers,1,1])
def grad(self, state):
grad = torch.zeros_like(state)
grad[:] = state
grad[0] = state[0] - 1
grad[self.num_workers - 1] = state[self.num_workers - 1] + 1
return grad
def error(self, state):
"""Mean Squared L2 norm"""
return torch.mean(state ** 2)
class RandomConstantsTask:
def __init__(
self, num_workers: int, solution_difference: float, noise_scale: float
):
self.num_workers = num_workers
self.name = f"Random constants"
self.error_metric = "Avg. sq. L2 distance from optimum"
self.noise_scale = noise_scale
self.targets = solution_difference * torch.randn(size=[num_workers, 1, 1], generator=torch.Generator().manual_seed(0))
self.avg_target = self.targets.mean(dim=0, keepdims=True)
def init_state(self):
return torch.zeros_like(self.targets) + 1
# return torch.randn(size=[self.num_workers,1,1])
def grad(self, state):
return state - self.targets + self.noise_scale * torch.randn_like(state)
def error(self, state):
"""Mean Squared L2 norm"""
return torch.mean((state - self.avg_target) ** 2)
class CircleTask:
def __init__(
self, num_workers: int, sigma: float, init_point = torch.tensor([0.,0.])
):
self.num_workers = num_workers
self.name = f"points on a 2D circle"
self.d = 2
self.error_metric = "Avg. sq. L2 distance from the target"
self.sigma = sigma
angles = torch.linspace(0, 2 * math.pi, self.num_workers)
self.targets = (torch.stack([torch.cos(angles), torch.sin(angles)]).T).view(num_workers, 2, 1)
self.init_point = init_point
self.avg_target = self.targets.mean(dim=0, keepdims=True)
def init_state(self):
return self.init_point.clone().view(1, 2, 1) + 0 * self.targets
def grad(self, state):
return state - self.targets + self.sigma * torch.randn_like(state) / math.sqrt(2)
def error(self, state):
"""Mean Squared L2 norm"""
return torch.mean((state - self.avg_target) ** 2)
class Iterate(NamedTuple):
step: int
state: torch.Tensor
num_messages_sent: int
class Edge(NamedTuple):
src: int
dst: int
def relaysum_grad(task, world, learning_rate, num_steps):
state = task.init_state()
# Initialize messages between connected workers to 0
messages: Mapping[Edge, float] = defaultdict(float)
num_messages_sent = 0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
new_messages = {}
for worker in world.workers:
neighbors = world.neighbors(worker)
for neighbor in neighbors:
new_messages[worker, neighbor] = g[worker] + sum(
messages[n, worker] for n in neighbors if n != neighbor
)
for worker in world.workers:
neighbors = world.neighbors(worker)
sum_grads = g[worker] + sum(new_messages[n, worker] for n in neighbors)
state[worker] -= learning_rate * sum_grads / world.num_workers
messages = new_messages
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)
def relaysum_grad_overlap(task, world, learning_rate, num_steps, momentum=0):
state = task.init_state()
# Initialize messages between connected workers to 0
messages: Mapping[Edge, float] = defaultdict(float)
num_messages_sent = 0
momentum_buffer = torch.zeros_like(state)
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
momentum_buffer.mul_(momentum).add_(g, alpha=(1-momentum))
# lr = min(step / 100, 1) * learning_rate
lr = learning_rate
# lr = min(step / 100, 1) * learning_rate
# if step > num_steps // 2:
# lr /= 2
new_messages = {}
for worker in world.workers:
neighbors = world.neighbors(worker)
for neighbor in neighbors:
new_messages[worker, neighbor] = lr * momentum_buffer[worker] + sum(
messages[n, worker] for n in neighbors if n != neighbor
)
sum_grads = lr * momentum_buffer[worker] + sum(messages[n, worker] for n in neighbors)
# momentum_buffer[worker] = sum_grads / world.num_workers
state[worker] -= sum_grads / world.num_workers
messages = new_messages
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)
def relaysum_grad_star(task, world, learning_rate, num_steps, momentum=0):
state = task.init_state()
# Initialize messages between connected workers to 0
messages: Mapping[Edge, float] = defaultdict(float)
new_messages: Mapping[Edge, float] = defaultdict(float)
num_messages_sent = 0
momentum_buffer = torch.zeros_like(state)
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
momentum_buffer.mul_(momentum).add_(g, alpha=(1-momentum))
lr = learning_rate
new_messages = {}
for worker in world.workers:
neighbors = world.neighbors(worker)
for neighbor in neighbors:
new_messages[worker, neighbor] = lr * momentum_buffer[worker] + sum(
messages[n, worker] for n in neighbors if n != neighbor
)
sum_grads = lr * momentum_buffer[worker] + sum(messages[n, worker] for n in neighbors)
# momentum_buffer[worker] = sum_grads / world.num_workers
state[worker] -= sum_grads / world.num_workers
messages = new_messages
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)
def relaysum_mix(task, world, learning_rate, num_steps, momentum=0, alpha=0.5):
state = task.init_state()
init_state = state[0].clone()
messages: Mapping[Edge, float] = defaultdict(float)
num_messages_sent = 0
momentum_buffer = torch.zeros_like(state)
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
momentum_buffer.mul_(momentum).add_(g, alpha=(1-momentum))
new_messages = {}
for worker in world.workers:
to_send = (1-alpha)*state[worker] - learning_rate * momentum_buffer[worker]
neighbors = world.neighbors(worker)
for neighbor in neighbors:
new_messages[worker, neighbor, "content"] = to_send + sum(
messages[n, worker, "content"] for n in neighbors if n != neighbor
)
new_messages[worker, neighbor, "count"] = 1 + sum(
messages[n, worker, "count"] for n in neighbors if n != neighbor
)
sum_grads = to_send + sum(messages[n, worker, "content"] for n in neighbors)
num_messages = 1 + sum(messages[n, worker, "count"] for n in neighbors)
state[worker] = (
alpha * state[worker] +
(sum_grads + (1-alpha)*init_state * (world.num_workers - num_messages)) / world.num_workers
)
# This also works, if you remove `- learning_rate * momentum_buffer[worker]` from messages
# state[worker] = alpha * (state[worker] - sum_grads / world.num_workers) + \
# (1-alpha) * ((state[worker] + sum(messages[n, worker, "algo1"] for n in neighbors) + init_state * (world.num_workers - num_messages)) / world.num_workers)
messages = new_messages
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)
def relaysum_model_overlap(task, world, learning_rate, num_steps, momentum=0):
state = task.init_state()
init_state = state[0].clone()
# Initialize messages between connected workers to 0
messages: Mapping[Edge, float] = defaultdict(float)
counts: Mapping[Edge, int] = defaultdict(int)
num_messages_sent = 0
momentum_buffer = torch.zeros_like(state)
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
momentum_buffer.mul_(momentum).add_(g, alpha=(1-momentum))
# state -= learning_rate * ((momentum_buffer * momentum/(1-momentum)) + g)
state -= learning_rate * momentum_buffer
new_messages = {}
new_counts = {}
for worker in world.workers:
neighbors = world.neighbors(worker)
for neighbor in neighbors:
new_messages[worker, neighbor] = state[worker] + sum(
messages[n, worker] for n in neighbors if n != neighbor
)
new_counts[worker, neighbor] = 1 + sum(
counts[n, worker] for n in neighbors if n != neighbor
)
num_messages = 1 + sum(counts[n, worker] for n in neighbors)
state[worker] = (
state[worker] + sum(messages[n, worker] for n in neighbors) + init_state * (world.num_workers - num_messages)
) / world.num_workers
# state[worker] = (
# state[worker] + sum(messages[n, worker] for n in neighbors)
# ) / num_messages
messages = new_messages
counts = new_counts
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)
def relaysum_model(task, world, learning_rate, num_steps):
state = task.init_state()
init_state = state[0].clone()
# Initialize messages between connected workers to 0
messages: Mapping[Edge, float] = defaultdict(float)
counts: Mapping[Edge, int] = defaultdict(int)
num_messages_sent = 0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
state -= learning_rate * g
new_messages = defaultdict(float)
new_counts = defaultdict(int)
for worker in world.workers:
neighbors = world.neighbors(worker)
for neighbor in neighbors:
new_messages[worker, neighbor] = state[worker] + sum(
messages[n, worker] for n in neighbors if n != neighbor
)
new_counts[worker, neighbor] = 1 + sum(
counts[n, worker] for n in neighbors if n != neighbor
)
for worker in world.workers:
neighbors = world.neighbors(worker)
num_messages = 1 + sum(new_counts[n, worker] for n in neighbors)
state[worker] = (
state[worker] + sum(new_messages[n, worker] for n in neighbors) + init_state * (world.num_workers - num_messages)
) / world.num_workers
messages = new_messages
counts = new_counts
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)
def time_varying_sgp(task, world, learning_rate, num_steps, overlap=False, num_communication_rounds=2):
state = task.init_state()
d = int(math.log2(world.num_workers-1)) + 1
num_messages_sent = 0
i = 0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
if not overlap:
state -= learning_rate * g
for _ in range(num_communication_rounds):
shift = 2 ** (i % d)
state = (torch.roll(state, shift, dims=0) + state) / 2
i += 1
num_messages_sent += 1
if overlap:
state -= learning_rate * g
yield Iterate(step, state, num_messages_sent)
def gossip(
task, world, learning_rate, num_steps, overlap=False, gossip_weight=None, momentum=0
):
state = task.init_state()
W = world.gossip_matrix(gossip_weight)
momentum_buffer = torch.zeros_like(state)
num_messages_sent = 0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
momentum_buffer.mul_(momentum).add_(g, alpha=(1-momentum))
if not overlap:
state -= learning_rate * momentum_buffer
# gossip
state = torch.einsum("wmn, wv -> vmn", state, W)
num_messages_sent += world.max_degree
if overlap:
state -= learning_rate * momentum_buffer
yield Iterate(step, state, num_messages_sent)
def all_reduce(
task, world, learning_rate, num_steps, overlap=False, momentum=0
):
state = task.init_state()
momentum_buffer = torch.zeros_like(state)
num_messages_sent = 0
prev_g = 0.0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
if overlap:
g = prev_g
prev_g = task.grad(state)
else:
g = task.grad(state)
momentum_buffer.mul_(momentum).add_(g, alpha=(1-momentum))
state -= learning_rate * momentum_buffer
# averaging
state = torch.mean(state, dim=0, keepdims=True).tile([state.shape[0], 1, 1])
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)
def quasi_global_momentum(
task, world, learning_rate, num_steps, overlap=False, gossip_weight=None, momentum=0.9
):
state = task.init_state()
W = world.gossip_matrix(gossip_weight)
momentum_buffer = torch.zeros_like(state)
num_messages_sent = 0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
prev_state = state.clone()
if not overlap:
state -= learning_rate * (momentum_buffer * momentum + g) / (1+momentum)
# gossip
state = torch.einsum("wmn, wv -> vmn", state, W)
momentum_buffer.mul_(momentum).add_((prev_state - state) / learning_rate, alpha=(1-momentum))
num_messages_sent += world.max_degree
if overlap:
state -= learning_rate * (momentum_buffer * momentum + g)
yield Iterate(step, state, num_messages_sent)
def gradient_tracking(task, world, learning_rate, num_steps, gossip_weight=None):
state = task.init_state()
W = world.gossip_matrix(gossip_weight)
correction = torch.zeros_like(state)
num_messages_sent = 0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
state -= learning_rate * (g - correction)
# gossip
state = torch.einsum("wmn, wv -> vmn", state, W)
correction = torch.einsum("wmn, wv -> vmn", correction - g, W) + g
num_messages_sent += 2 * world.max_degree
yield Iterate(step, state, num_messages_sent)
def d2(task, world, learning_rate, num_steps, gossip_weight=None):
state = task.init_state()
W = world.gossip_matrix(gossip_weight)
correction = torch.zeros_like(state)
num_messages_sent = 0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
update = -learning_rate * g
prev_state = state.clone()
state = torch.einsum("wmn, wv -> vmn", state + update + correction, W)
correction = state - prev_state - update
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)
def exact_diffusion(task, world, learning_rate, num_steps, gossip_weight=None):
"""
This differs from D2 by using a different gossip matrix (W+I)/2
"""
state = task.init_state()
W = (world.gossip_matrix(gossip_weight) + torch.eye(world.num_workers))/2
correction = torch.zeros_like(state)
num_messages_sent = 0
for step in range(num_steps):
yield Iterate(step, state, num_messages_sent)
g = task.grad(state)
update = -learning_rate * g
prev_state = state.clone()
state = torch.einsum("wmn, wv -> vmn", state + update + correction, W)
correction = state - prev_state - update
num_messages_sent += world.max_degree
yield Iterate(step, state, num_messages_sent)