-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDDSP_Final.py
152 lines (114 loc) · 4.47 KB
/
DDSP_Final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time as time
from numpy import genfromtxt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM, GRU
from keras import optimizers
data=np.load('truth_h_1_c_10_F_20.npy')
print(np.shape(data))
train_size = 1000000
val_size = 200000
std_y = .3608
std_x = 6.7887
mean_y=.126
mean_x=3.5303
lookback = 10
def make_LSTM_datasets(data, train_size, val_size):
samples = train_size + val_size + lookback
nfeatures = 64
sdata = data[:, :samples]
Xtemp = {}
for i in range(lookback):
Xtemp[i] = sdata[:, i:samples - (lookback - i - 1)]
X = Xtemp[0]
for i in range(lookback - 1):
X = np.vstack([X, Xtemp[i + 1]])
X = np.transpose(X)
Y = np.transpose(sdata[8:,:samples])
Y_X = np.transpose(sdata[:8,:samples])
Xtrain = X[:train_size, :]
Ytrain = Y[:train_size, :]
Xval = X[train_size:train_size + val_size+10, :]
Yval = Y[train_siz:train_size + val_size+10, :]
Y_Xval = Y_X[train_size:train_size + val_size+10, :]
Xtrain = Xtrain.reshape((Xtrain.shape[0], lookback, 72))
Xval = Xval.reshape((Xval.shape[0], lookback, 72))
print("Xtrain shape = ", Xtrain.shape, "Ytrain shape = ", Ytrain.shape)
print("Xval shape = ", Xval.shape, " Yval shape = ", Yval.shape)
return Xtrain, Ytrain, Xval, Yval, nfeatures, Y_Xval
nhidden = 1000
def make_and_train_LSTM_model(Xtrain, Ytrain, nfeatures, nhidden):
model = Sequential()
model.add(GRU(nhidden, input_shape=(Xtrain.shape[1], Xtrain.shape[2])))
model.add(Dense(nfeatures))
adam=optimizers.Adam(lr=.0001)
model.compile(loss='mae', optimizer=adam)
# fit network
history = model.fit(Xtrain, Ytrain, epochs=75, batch_size=100, shuffle=True)
model.save_weights("./weights_DDSP_F_20")
return model, history
def model_predict(model,Xval):
ypred = np.zeros((Xval.shape[0],nfeatures))
xpred = np.zeros((Xval.shape[0],8))
for i in range(Xval.shape[0]):
if i ==0:
tt = Xval[0,:,:].reshape((1,lookback,72))
ypred[i,:] = model.predict(tt)
xpred[i:10,:]=np.tile(Xval[0,0,:8],10).reshape((10,8))
elif i < lookback:
tt = Xval[i,:,:].reshape((1,lookback,72))
u = ypred[:i,:]
tt[0,(lookback-i):lookback,8:] = u
ypred[i,:] = model.predict(tt)
else:
if i%10==0:
x_vec=tt[0,8,:8]*std_x+mean_x
y_mat = ypred[i-1, :] * std_y + mean_y
xnew = x_step(x_vec,y_mat)
xnew=(xnew-mean_x)/std_x
xpred[(i):(i+10),:]=np.tile(xnew,10).reshape((10,8))
tt[0,0:lookback,:8] = np.tile(xnew,10).reshape((10,8))
tt[0,0:lookback,8:] = ypred[i-lookback:i,:].reshape((1,lookback,64))
ypred[i,:] = model.predict(tt)
return xpred
def x_step(x_vec, y_mat, dt_x=.05):
y_mat = y_mat.reshape((8, 8), order='F')
dx1 = x_der(x_vec, y_mat)
x_vec2 = x_vec + .5 * dt_x * dx1
dx2 = x_der(x_vec2, y_mat)
x_vec3 = x_vec + .5 * dt_x * dx2
dx3 = x_der(x_vec3, y_mat)
x_vec4 = x_vec + dt_x * dx3
dx4 = x_der(x_vec4, y_mat)
x_vec = x_vec + dt_x / 6 * (dx1 + 2 * dx2 + 2 * dx3 + dx4)
return x_vec
def x_der(x_vec, y_mat):
f = 20
h = 1
c = 10
b = 10
y_avg = np.sum(y_mat, 0).squeeze()
minus = [-1, 0, 1, 2, 3, 4, 5, 6]
minus2 = [-2, -1, 0, 1, 2, 3, 4, 5]
plus = [1, 2, 3, 4, 5, 6, 7, 0]
x_minus = x_vec[minus]
x_minus2 = x_vec[minus2]
x_plus = x_vec[plus]
dx = x_minus * (x_plus - x_minus2) - x_vec + f - (h * c / b) * y_avg
return dx
Xtrain,Ytrain,Xval,Yval,nfeatures,Y_Xval = make_LSTM_datasets(data,train_size,val_size)
model,history = make_and_train_LSTM_model(Xtrain,Ytrain,nfeatures,nhidden)
x_store=np.zeros((20000,8))
for i in range(100):
pred_data=Xval[0+int(i*2000):2000+int(i*2000),:,:]
xpred = model_predict(model,pred_data)
x_store[int(i*200):int(i*200)+200,:]=xpred[::10,:]
tot_err_DDSP=np.zeros((200,100))
for i in range(0,100):
mean=np.mean(np.linalg.norm(Y_Xval[int(i*2000):int(i*2000)+2000],2,axis=1))
error=np.linalg.norm(x_store[int(i*200):int(i*200)+200]-Y_Xval[int(i*2000):int(i*2000)+2000:10],2,axis=1)/mean
tot_err_DDSP[:,i]=error
tot_err_DDSP=np.mean(tot_err_DDSP,axis=1)