-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict.m
229 lines (181 loc) · 7.88 KB
/
predict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
function [density_mat, density_peak_location_mat] = ...
predict(net, path_predictions, path_probabilities, layernum, ...
i_init, i_final, j_init, j_final, z_init, z_final, num_classes, mask, mipPrediction, vsvi_save)
if ~exist('mask','var')
mask = [];
end
if ~exist('mipPrediction','var')
mipPrediction = [];
end
overwrite = 0;
vast = evalin('base','vast');
vinfo = vast.getinfo();
size_x = double(vinfo.datasizex);
size_y = double(vinfo.datasizey);
size_z = double(vinfo.datasizez);
if isempty(mipPrediction)
inStr = inputdlg('mip','mip');
miplevel = str2double(inStr{1});
else
miplevel = mipPrediction;
end
[x, y, z, res] = vast.getviewcoordinates()
askvastLoad = 1; %%% for vast to load/cache the image
layernr = layernum; %%% from which layer toread
getimmediatFlag = 0; %%% force fast to provide immedate answer
predPath = fullfile(path_predictions,sprintf('mip%d',miplevel))
probPath = fullfile(path_probabilities,sprintf('mip%d',miplevel));
mkdir(predPath);
mkdir(probPath);
step = 1024;
patch_size = 1024;
if ~exist('i_init', 'var') || isempty(i_init)
i_init = 0;
end
if ~exist('i_final', 'var') || isempty(i_final)
i_final = size_x-1;
end
if ~exist('j_init', 'var') || isempty(j_init)
j_init = 0;
end
if ~exist('j_final', 'var') || isempty(j_final)
j_final = size_y-1;
end
if ~exist('z_init', 'var') || isempty(z_init)
z_init = 0;
end
if ~exist('z_final', 'var') || isempty(z_final)
z_final = size_z-1;
end
i_init = round(i_init./2.^miplevel);
j_init = round(j_init./2.^miplevel);
i_final = round(i_final./2.^miplevel);
j_final = round(j_final./2.^miplevel);
size_x_mip = floor(size_x./2.^miplevel);
size_y_mip = floor(size_y./2.^miplevel);
% initialize matrix for density maps
density_mat = zeros(ceil(size_x/patch_size), ceil(size_y/patch_size), size_z-1);
density_peak_location_mat = zeros(ceil(size_x/patch_size), ceil(size_y/patch_size), size_z-1, 2);
i_init = i_init - mod(i_init, 1024);
j_init = j_init - mod(j_init, 1024);
col_idx = i_init/1024-1;
pad_size = 64;
zstep = vinfo.cubesizez;
for i = i_init:step:i_final
col_idx = col_idx+1;
row_idx = j_init/1024-1;
for j = j_init:step:j_final
row_idx = row_idx+1;
xstart = uint32(max(i-pad_size,0));
ystart = uint32(max(j-pad_size,0));
xend = uint32(min(i+patch_size-1+pad_size, size_x_mip-1));
yend = uint32(min(j+patch_size-1+pad_size, size_y_mip-1));
k = z_init;
while k <= z_final
ystartMask = max(floor((ystart-j_init)./(j_final-j_init)*(size(mask,1)-1)+1),1);
xstartMask = max(floor((xstart-i_init)./(i_final-i_init)*(size(mask,2)-1)+1),1);
yendMask = min(ceil((yend-j_init)./(j_final-j_init)*(size(mask,1)-1)+1),size(mask,1));
xendMask = min(ceil((xend-i_init)./(i_final-i_init)*(size(mask,2)-1)+1),size(mask,2));
subMask = mask(ystartMask:yendMask,xstartMask:xendMask,:);
if ~isempty(mask) && ~any(subMask(:))
k = k + zstep;
continue
end
kend = min(k+zstep-1,z_final);
if overwrite == 0
sect_prob_dir = fullfile(probPath, sprintfc('Sect_%.6d', k:kend));
prob_fname = fullfile(sect_prob_dir, sprintfc(['sect_%.6d_r' sprintf('%d',row_idx) '_c' sprintf('%d',col_idx) '.png'],k:kend));
if all(cellfun(@(x) exist(x,'file'), prob_fname))
k = k + zstep;
continue
end
end
try
[emimage, res]= vast.getemimage(layernr,miplevel,xstart,xend,ystart,yend,k,kend,getimmediatFlag,askvastLoad);
catch
keyboard
end
if isempty(emimage)
continue;
else
try
entrp = entropy(emimage)
catch
keyboard
end
end
if entrp < 1
k = k + zstep;
continue
end
for ik=1:size(emimage,3)
sect_pred_dir = fullfile(predPath, sprintf('Sect_%.6d', k+ik-1));
sect_prob_dir = fullfile(probPath, sprintf('Sect_%.6d', k+ik-1));
if ~exist(sect_pred_dir, 'dir')
mkdir(sect_pred_dir);
mkdir(sect_prob_dir);
end
emimage_ik = emimage(:,:,ik);
if sum(emimage_ik(:)) == 0
continue
end
if entropy(emimage_ik) < 1
continue
end
prob_fname = fullfile(sect_prob_dir, sprintf('sect_%.6d_r%d_c%d.png',k+ik-1, row_idx, col_idx));
if exist(prob_fname,'file') && overwrite == 0
continue
end
try
emimage_ik = padarray(emimage_ik,[double(ystart-(j-pad_size)), double(xstart-(i-pad_size))],0,'pre');
emimage_ik = padarray(emimage_ik,[double((j+patch_size-1+pad_size)-yend), double((i+patch_size-1+pad_size)-xend)],0,'post');
emimage_ik = adapthisteq(emimage_ik); % em_correction(emimage_ik, size(emimage_ik, 1));
catch
keyboard
end
if isempty(emimage_ik)
keyboard
end
try
tic
[predictions,~,probabilities] = semanticseg(emimage_ik, net.net, 'ExecutionEnvironment','auto');
predictions = predictions(pad_size+1:end-pad_size,pad_size+1:end-pad_size);
probabilities = probabilities(pad_size+1:end-pad_size,pad_size+1:end-pad_size,:);
toc
switch num_classes
case 2
prob_uint8 = uint8(probabilities(:, :, 1)*255);
prob_uint8 = prob_uint8 + 1;
imwrite(prob_uint8, prob_fname,'png')
case 3
prob_3channels = zeros(size(probabilities, 1), size(probabilities, 2), num_classes,'uint8');
prob_3channels(:, :, 1) = uint8(probabilities(:, :, 1)*255);
prob_3channels(:, :, 2) = uint8(probabilities(:, :, 2)*255);
prob_3channels(:, :, 3) = uint8(probabilities(:, :, 3)*255);
imwrite(prob_3channels,prob_fname,'png')
end
imwrite((double(predictions)-1)*255/max(double(predictions(:))-1), fullfile(sect_pred_dir, sprintf('sect_%.6d_r%d_c%d.png',k+ik-1, row_idx, col_idx)),'png');
catch
keyboard;
end
end
k = k + zstep;
end
end
end
if vsvi_save
new_file = fopen(fullfile(path_probabilities, "mEMbrain_autogenerated.vsvi"), "w")
vsvi_lines = readlines("vsvi_template.txt")
for line_idx = 1:length(vsvi_lines)
line = vsvi_lines(line_idx)
new_line = strrep(line, "PATH", path_probabilities);
new_line = strrep(new_line, "TRGDATAX", num2str(size_x));
new_line = strrep(new_line, "TRGDATAY", num2str(size_y));
new_line = strrep(new_line, "TRGDATAZ", num2str(size_z));
new_line = strrep(new_line, "VXSIZEX", num2str(vinfo.voxelsizex));
new_line = strrep(new_line, "VXSIZEY", num2str(vinfo.voxelsizey));
new_line = strrep(new_line, "VXSIZEZ", num2str(vinfo.voxelsizez));
fprintf(new_file, "%s\n", new_line);
end
fclose(new_file);
end