-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathphantom_for_pyhst.py
48 lines (36 loc) · 1.24 KB
/
phantom_for_pyhst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
In this script, we build a synthetic sinogram to be used with PyHST as well as
with the demo_tv_reconstruction.py script. This will help to compare the
different methods.
"""
import numpy as np
from reconstruction.util import generate_synthetic_data
from reconstruction.projections import build_projection_operator
from EdfFile import EdfFile
# Synthetic data
l = 256
x = generate_synthetic_data(l)
# Projection operator and projections data, with noise
H = build_projection_operator(l, l/5)
y = H * x.ravel()[:, np.newaxis]
y += 2*np.random.randn(*y.shape)
y[y<0] = 0
y = y.reshape((l/5, l))
y = y.astype(np.float32)
# Write EdfFile with float32 data
phantom = EdfFile("phantom_float.edf")
for line in y:
lines = np.tile(line, (3, 1))
print "writing", lines.shape
phantom._WriteImage({}, lines, DataType="FloatValue", Append=1)
#phantom.WriteImage({}, lines)
phantom._EdfFile__makeSureFileIsClosed()
y *= 2**15 / y.max()
y = y.astype(np.uint16)
# Write EdfFile with uint16 data
phantom = EdfFile("phantom.edf")
for line in y:
lines = np.tile(line, (3, 1))
phantom._WriteImage({}, lines, DataType="UnsignedShort", ByteOrder="LowByteFirst", Append=1)
#phantom.WriteImage({}, lines)
phantom._EdfFile__makeSureFileIsClosed()