-
Notifications
You must be signed in to change notification settings - Fork 23
/
random_walker.py
395 lines (333 loc) · 13.5 KB
/
random_walker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""
Random walker algorithm
from *Random walks for image segmentation*, Leo Grady, IEEE Trans
Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83.
Dependencies:
* numpy >= 1.4, scipy
* optional: pyamg, numexpr
Installing pyamg and using the 'cg_mg' mode of random_walker improves
significantly the performance.
Installing numexpr makes only a slight improvement.
"""
# Author: Emmanuelle Gouillart <[email protected]>
# Copyright (c) 2009-2011, Emmanuelle Gouillart
# License: BSD
import warnings
import numpy as np
from scipy import sparse, ndimage
try:
from scipy.sparse.linalg.dsolve import umfpack
u = umfpack.UmfpackContext()
except:
warnings.warn("""Scipy was built without UMFPACK. Consider rebuilding
Scipy with UMFPACK, this will greatly speed up the random walker
functions. You may also install pyamg and run the random walker function
in cg_mg mode (see the docstrings)
""")
try:
from pyamg import smoothed_aggregation_solver, ruge_stuben_solver
amg_loaded = True
except ImportError:
amg_loaded = False
import scipy
from scipy.sparse.linalg import cg
try:
import numexpr as ne
numexpr_loaded = True
except ImportError:
numexpr_loaded = False
#-----------Laplacian--------------------
def _make_edges_3d(n_x, n_y, n_z):
"""
Returns a list of edges for a 3D image.
Parameters
===========
n_x: integer
The size of the grid in the x direction.
n_y: integer
The size of the grid in the y direction
n_z: integer
The size of the grid in the z direction
"""
vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z))
edges_deep = np.vstack((vertices[:, :, :-1].ravel(),
vertices[:, :, 1:].ravel()))
edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel()))
edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel()))
edges = np.hstack((edges_deep, edges_right, edges_down))
return edges
def _compute_weights_3d(edges, data, beta=130, eps=1.e-6):
l_x, l_y, l_z = data.shape
gradients = _compute_gradients_3d(data)**2
beta /= 10 * data.std()
gradients *= beta
if numexpr_loaded:
weights = ne.evaluate("exp(- gradients)")
else:
weights = np.exp(- gradients)
weights += eps
return weights
def _compute_gradients_3d(data):
l_x, l_y, l_z = data.shape
gr_deep = np.abs(data[:, :, :-1] - data[:, :, 1:]).ravel()
gr_right = np.abs(data[:, :-1] - data[:, 1:]).ravel()
gr_down = np.abs(data[:-1] - data[1:]).ravel()
return np.r_[gr_deep, gr_right, gr_down]
def _make_laplacian_sparse(edges, weights):
"""
Sparse implementation
"""
pixel_nb = edges.max() + 1
diag = np.arange(pixel_nb)
i_indices = np.hstack((edges[0], edges[1]))
j_indices = np.hstack((edges[1], edges[0]))
data = np.hstack((-weights, -weights))
lap = sparse.coo_matrix((data, (i_indices, j_indices)),
shape=(pixel_nb, pixel_nb))
connect = - np.ravel(lap.sum(axis=1))
lap = sparse.coo_matrix((np.hstack((data, connect)),
(np.hstack((i_indices,diag)), np.hstack((j_indices, diag)))),
shape=(pixel_nb, pixel_nb))
return lap.tocsr()
def _clean_labels_ar(X, labels):
labels = np.ravel(labels)
labels[labels == 0] = X
return labels
def _buildAB(lap_sparse, labels):
"""
Build the matrix A and rhs B of the linear system to solve
"""
l_x, l_y, l_z = labels.shape
labels = labels[labels >= 0]
indices = np.arange(labels.size)
unlabeled_indices = indices[labels == 0]
seeds_indices = indices[labels > 0]
# The following two lines take most of the time
B = lap_sparse[unlabeled_indices][:, seeds_indices]
lap_sparse = lap_sparse[unlabeled_indices][:, unlabeled_indices]
nlabels = labels.max()
rhs = []
for lab in range(1, nlabels+1):
mask = (labels[seeds_indices] == lab)
fs = sparse.csr_matrix(mask)
fs = fs.transpose()
rhs.append(B * fs)
return lap_sparse, rhs
def _trim_edges_weights(edges, weights, mask):
mask0 = np.hstack((mask[:, :, :-1].ravel(), mask[:, :-1].ravel(),
mask[:-1].ravel()))
mask1 = np.hstack((mask[:, :, 1:].ravel(), mask[:, 1:].ravel(),
mask[1:].ravel()))
ind_mask = np.logical_and(mask0, mask1)
edges, weights = edges[:, ind_mask], weights[ind_mask]
maxval = edges.max()
order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval+1))
edges = order[edges]
return edges, weights
def _build_laplacian(data, mask=None, beta=50):
l_x, l_y, l_z = data.shape
edges = _make_edges_3d(l_x, l_y, l_z)
weights = _compute_weights_3d(edges, data, beta=beta, eps=1.e-10)
if mask is not None:
edges, weights = _trim_edges_weights(edges, weights, mask)
lap = _make_laplacian_sparse(edges, weights)
del edges, weights
return lap
#----------- Random walker algorithms (with markers or with prior) -------------
def random_walker(data, labels, beta=130, mode='cg_mg', tol=1.e-3, copy=True):
"""
Segmentation with random walker algorithm by Leo Grady,
given some data and an array of labels (the more labeled
pixels, the less unknowns and the faster the resolution)
Parameters
----------
data : array_like
Image to be segmented in regions. `data` can be two- or
three-dimensional.
labels : array of ints
Array of seed markers labeled with different integers
for different phases. Negative labels correspond to inactive
pixels that do not diffuse (they are removed from the graph).
beta : float
Penalization coefficient for the random walker motion
(the greater `beta`, the more difficult the diffusion).
mode : {'bf', 'cg_mg', 'cg'}
Mode for solving the linear system in the random walker
algorithm.
- 'bf' (brute force): an LU factorization of the Laplacian
is computed. This is fast for small images (<256x256), but
very slow (due to the memory cost) and memory-consuming for
big images.
- 'cg' (conjugate gradient): the linear system is solved
iteratively using the Conjugate Gradient method from
scipy.sparse.linalg. This is less memory-consuming than the
brute force method for large images, but it is quite slow.
- 'cg_mg' (conjugate gradient with multigrid preconditioner):
a preconditioner is computed using a multigrid solver, then
the solution is computed with the Conjugate Gradient method.
This mode requires that the pyamg module
(http://code.google.com/p/pyamg/) is installed.
tol : tolerance to achieve when solving the linear system
copy : bool
If copy is False, the `labels` array will be overwritten with
the result of the segmentation. Use copy=False if you want to
save on memory.
Returns
-------
output : ndarray of ints
Array in which each pixel has been attributed the label number
that reached the pixel first by diffusion.
Notes
-----
The algorithm was first proposed in *Random walks for image
segmentation*, Leo Grady, IEEE Trans Pattern Anal Mach Intell.
2006 Nov;28(11):1768-83.
Examples
--------
>>> a = np.zeros((10, 10)) + 0.2*np.random.random((10, 10))
>>> a[5:8, 5:8] += 1
>>> b = np.zeros_like(a)
>>> b[3,3] = 1 #Marker for first phase
>>> b[6,6] = 2 #Marker for second phase
>>> random_walker(a, b)
array([[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 2., 2., 2., 1., 1.],
[ 1., 1., 1., 1., 1., 2., 2., 2., 1., 1.],
[ 1., 1., 1., 1., 1., 2., 2., 2., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])
"""
# We work with 3-D arrays
data = np.atleast_3d(data)
if copy:
labels = np.copy(labels)
labels = labels.astype(np.int)
# If the array has pruned zones, be sure that no isolated pixels
# exist between pruned zones (they could not be determined)
if np.any(labels<0):
filled = ndimage.binary_propagation(labels>0, mask=labels>=0)
labels[np.logical_and(np.logical_not(filled), labels == 0)] = -1
del filled
labels = np.atleast_3d(labels)
if np.any(labels < 0):
lap_sparse = _build_laplacian(data, mask=labels >= 0, beta=beta)
else:
lap_sparse = _build_laplacian(data, beta=beta)
lap_sparse, B = _buildAB(lap_sparse, labels)
# We solve the linear system
# lap_sparse X = B
# where X[i, j] is the probability that a marker of label i arrives
# first at pixel j by diffusion
if mode == 'cg':
X = _solve_cg(lap_sparse, B, tol=tol)
if mode == 'cg_mg':
X = _solve_cg_mg(lap_sparse, B, tol=tol)
if mode == 'bf':
X = _solve_bf(lap_sparse, B)
X = _clean_labels_ar(X + 1, labels)
data = np.squeeze(data)
return X.reshape(data.shape)
def _solve_bf(lap_sparse, B):
lap_sparse = lap_sparse.tocsc()
solver = sparse.linalg.factorized(lap_sparse.astype(np.double))
X = np.array([solver(np.array((-B[i]).todense()).ravel())\
for i in range(len(B))])
X = np.argmax(X, axis=0)
return X
def _solve_cg(lap_sparse, B, tol):
lap_sparse = lap_sparse.tocsc()
X = []
for i in range(len(B)):
x0 = cg(lap_sparse, -B[i].todense(), tol=tol)[0]
X.append(x0)
X = np.array(X)
X = np.argmax(X, axis=0)
return X
def _solve_cg_mg(lap_sparse, B, tol):
if not amg_loaded:
print """the pyamg module (http://code.google.com/p/pyamg/)
must be installed to use the amg mode"""
raise ImportError
X = []
#lap_sparse = lap_sparse.tocsr()
ml = ruge_stuben_solver(lap_sparse)
M = ml.aspreconditioner(cycle='V')
for i in range(len(B)):
x0 = cg(lap_sparse, -B[i].todense(), tol=tol, M=M, maxiter=30)[0]
X.append(x0)
X = np.array(X)
X = np.argmax(X, axis=0)
return X
def random_walker_prior(data, prior, mode='bf', gamma=1.e-2):
"""
Parameters
----------
data : array_like
Image to be segmented in regions. `data` can be two- or
three-dimensional.
prior : array_like
Array of 1-dimensional probabilities that the pixels
belong to the different phases. The size of `prior` is n x s
where n is the number of phases to be segmented, and s the
total number of pixels.
mode : {'bf', 'amg'}
Mode for solving the linear system in the random walker
algorithm. `mode` can be either 'bf' (for brute force),
in which case matrices are directly inverted, or 'amg'
(for algebraic multigrid solver), in which case a multigrid
approach is used. The 'amg' mode uses the pyamg module
(http://code.google.com/p/pyamg/), which must be installed
to use this mode.
gamma : float
gamma determines the absence of confidence into the prior.
The smaller gamma, the more the output values will be determined
according to the prior only. Conversely, the greater gamma,
the more continuous the segmented regions will be.
Returns
-------
output : ndarray of ints
Segmentation of data. The number of phases corresponds to the
number of lines in prior.
Notes
-----
The algorithm was first proposed in *Multilabel random walker
image segmentation using prior models*, L. Grady, IEEE CVPR 2005,
p. 770 (2005).
Examples
--------
>>> a = np.zeros((40, 40))
>>> a[10:-10, 10:-10] = 1
>>> a += 0.7*np.random.random((40, 40))
>>> p = a.max() - a.ravel()
>>> q = a.ravel()
>>> prior = np.array([p, q])
>>> labs = random_walker_prior(a, prior)
"""
data = np.atleast_3d(data)
lap_sparse = _build_laplacian(data, beta=50)
dia = range(data.size)
shx, shy = lap_sparse.shape
lap_sparse = lap_sparse + sparse.coo_matrix(
(gamma*prior.sum(axis=0), (range(shx), range(shy))))
del dia
if mode == 'bf':
lap_sparse = lap_sparse.tocsc()
solver = sparse.linalg.factorized(lap_sparse.astype(np.double))
X = np.array([solver(gamma*label_prior)
for label_prior in prior])
elif mode == 'amg':
if not amg_loaded:
print """the pyamg module (http://code.google.com/p/pyamg/)
must be installed to use the amg mode"""
raise ImportError
lap_sparse = lap_sparse.tocsr()
mls = smoothed_aggregation_solver(lap_sparse)
del lap_sparse
X = np.array([mls.solve(gamma*label_prior)
for label_prior in prior])
del mls
return np.squeeze((np.argmax(X, axis=0)).reshape(data.shape))