-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathring.go
199 lines (188 loc) · 5.11 KB
/
ring.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Copyright (c) 2019, The Emergent Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package popcode
import (
"cogentcore.org/core/math32"
)
// Ring is a OneD popcode that encodes a circular value such as an angle
// that wraps around at the ends. It uses two internal vectors
// to render the wrapped-around values into, and then adds them into
// the final result. Unlike regular PopCodes, the Min and Max should
// represent the exact range of the value (e.g., 0 to 360 for angle)
// with no extra on the ends, as that extra will wrap around to
// the other side in this case.
type Ring struct {
OneD
// low-end encoding vector
LowVec []float32 `display:"-"`
// high-end encoding vector
HighVec []float32 `display:"-"`
}
// AllocVecs allocates internal LowVec, HighVec storage,
// allowing for variable lengths to be encoded using same object,
// growing capacity to max, but using exact amount each time
func (pc *Ring) AllocVecs(n int) {
if cap(pc.LowVec) < n {
pc.LowVec = make([]float32, n)
pc.HighVec = make([]float32, n)
}
pc.LowVec = pc.LowVec[:n]
pc.HighVec = pc.HighVec[:n]
}
// Encode generates a pattern of activation of given size to encode given value.
// n must be 2 or more.
// pat slice will be constructed if len != n
func (pc *Ring) Encode(pat *[]float32, val float32, n int) {
pc.Clip = false // doesn't work with clip!
if len(*pat) != n {
*pat = make([]float32, n)
}
pc.AllocVecs(n)
rng := pc.Max - pc.Min
sr := pc.Sigma * rng
if math32.Abs(pc.Max-val) < sr { // close to top
pc.EncodeImpl(&pc.LowVec, pc.Min+(val-pc.Max), n) // 0 + (340 - 360) = -20
pc.EncodeImpl(&pc.HighVec, val, n)
} else if math32.Abs(val-pc.Min) < sr { // close to bottom
pc.EncodeImpl(&pc.LowVec, val, n) // 0 + (340 - 360) = -20
pc.EncodeImpl(&pc.HighVec, pc.Max+(val-pc.Min), n) // 360 + (20-0) = 380
} else {
pc.EncodeImpl(pat, val, n)
return
}
for i := 0; i < n; i++ {
(*pat)[i] = pc.LowVec[i] + pc.HighVec[i]
}
}
// EncodeImpl generates a pattern of activation of given size to encode given value.
// n must be 2 or more.
// pat slice will be constructed if len != n
func (pc *Ring) EncodeImpl(pat *[]float32, val float32, n int) {
if len(*pat) != n {
*pat = make([]float32, n)
}
if pc.Clip {
val = math32.Clamp(val, pc.Min, pc.Max)
}
rng := pc.Max - pc.Min
gnrm := 1 / (rng * pc.Sigma)
incr := rng / float32(n-1)
for i := 0; i < n; i++ {
trg := pc.Min + incr*float32(i)
act := float32(0)
switch pc.Code {
case GaussBump:
dist := gnrm * (trg - val)
act = math32.Exp(-(dist * dist))
case Localist:
dist := math32.Abs(trg - val)
if dist > incr {
act = 0
} else {
act = 1.0 - (dist / incr)
}
}
(*pat)[i] = act
}
}
// Decode decodes value from a pattern of activation
// as the activation-weighted-average of the unit's preferred
// tuning values.
// pat pattern must be len >= 2
func (pc *Ring) Decode(pat []float32) float32 {
n := len(pat)
sn := int(pc.Sigma * float32(n)) // amount on each end to blank
hsn := (n - 1) - sn
hn := n / 2
// and record activity in each end region
var lsum, hsum, lend, hend float32
for i := 0; i < n; i++ {
v := pat[i]
if i < sn {
lend += v
} else if i >= hsn {
hend += v
}
if i < hn {
lsum += v
} else {
hsum += v
}
}
rng := pc.Max - pc.Min
half := rng / 2
incr := rng / float32(n-1)
avg := float32(0)
sum := float32(0)
thr := float32(sn) * pc.Thr // threshold activity to count as having something in tail
if lend < thr && hend < thr { // neither has significant activity, use straight decode
for i := 0; i < n; i++ {
act := pat[i]
trg := pc.Min + incr*float32(i)
if act < pc.Thr {
act = 0
}
avg += trg * act
sum += act
}
} else if lsum > hsum { // lower is more active -- wrap high end below low end
for i := 0; i < hn; i++ { // decode lower half as usual
act := pat[i]
trg := pc.Min + incr*float32(i)
if act < pc.Thr {
act = 0
}
avg += trg * act
sum += act
}
min := pc.Min - half
for i := hn; i < n; i++ { // decode upper half as starting below lower
act := pat[i]
trg := min + incr*float32(i-hn)
if act < pc.Thr {
act = 0
}
avg += trg * act
sum += act
}
} else {
for i := hn; i < n; i++ { // decode upper half as usual
act := pat[i]
trg := pc.Min + incr*float32(i)
if act < pc.Thr {
act = 0
}
avg += trg * act
sum += act
}
min := pc.Max
for i := 0; i < hn; i++ { // decode lower half as starting above upper
act := pat[i]
trg := min + incr*float32(i)
if act < pc.Thr {
act = 0
}
avg += trg * act
sum += act
}
}
sum = math32.Max(sum, pc.MinSum)
avg /= sum
return avg
}
// Values sets the vals slice to the target preferred tuning values
// for each unit, for a distribution of given size n.
// n must be 2 or more.
// vals slice will be constructed if len != n
func (pc *Ring) Values(vals *[]float32, n int) {
if len(*vals) != n {
*vals = make([]float32, n)
}
rng := pc.Max - pc.Min
incr := rng / float32(n-1)
for i := 0; i < n; i++ {
trg := pc.Min + incr*float32(i)
(*vals)[i] = trg
}
}