-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlearn.go
975 lines (816 loc) · 32.4 KB
/
learn.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
// Code generated by "goal build"; DO NOT EDIT.
//line learn.goal:1
// Copyright (c) 2019, The Emergent Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package axon
import (
"cogentcore.org/core/math32"
"cogentcore.org/core/math32/minmax"
"cogentcore.org/lab/base/randx"
"cogentcore.org/lab/gosl/slbool"
"github.com/emer/axon/v2/chans"
"github.com/emer/axon/v2/kinase"
)
//////// learn.go contains the learning params and functions for axon
//gosl:start
//gosl:import "github.com/emer/axon/v2/kinase"
// LearnCaParams parameterizes the neuron-level calcium signals driving learning:
// LearnCa = NMDA + VGCC Ca sources, where VGCC can be simulated from spiking or
// use the more complex and dynamaic VGCC channel directly.
// LearnCa is then integrated in a cascading manner at multiple time scales:
// CaM (as in calmodulin), CaP (ltP, CaMKII, plus phase), CaD (ltD, DAPK1, minus phase).
type LearnCaParams struct {
// Norm is the denominator used for normalizing [LearnCa], so the
// max is roughly 1 - 1.5 or so, which works best in terms of previous
// standard learning rules, and overall learning performance.
Norm float32 `default:"80"`
// SpikeVGCC uses spikes to generate VGCC instead of actual VGCC current.
// See SpikeVGCCa for calcium contribution from each spike.
SpikeVGCC slbool.Bool `default:"true"`
// SpikeVgccCa is the multiplier on spike for computing Ca contribution
// to [LearnCa], in SpikeVGCC mode.
SpikeVgccCa float32 `default:"35"`
// VgccTau is the time constant of decay for VgccCa calcium.
// It is highly transient around spikes, so decay and diffusion
// factors are more important than for long-lasting NMDA factor.
// VgccCa is integrated separately in [VgccCaInt] prior to adding
// into NMDA Ca in [LearnCa].
VgccTau float32 `default:"10"`
// Dt are time constants for integrating [LearnCa] across
// M, P and D cascading levels.
Dt kinase.CaDtParams `display:"inline"`
// VgccDt rate = 1 / tau
VgccDt float32 `display:"-" json:"-" xml:"-" edit:"-"`
// NormInv = 1 / Norm
NormInv float32 `display:"-" json:"-" xml:"-" edit:"-"`
pad, pad2 int32
}
func (lc *LearnCaParams) Defaults() {
lc.Norm = 80
lc.SpikeVGCC.SetBool(true)
lc.SpikeVgccCa = 35
lc.VgccTau = 10
lc.Dt.Defaults()
lc.Dt.MTau = 2
lc.Update()
}
func (lc *LearnCaParams) Update() {
lc.Dt.Update()
lc.VgccDt = 1 / lc.VgccTau
lc.NormInv = 1 / lc.Norm
}
func (lc *LearnCaParams) ShouldDisplay(field string) bool {
switch field {
case "SpikeVgccCa":
return lc.SpikeVGCC.IsTrue()
default:
return true
}
}
// VgccCa updates the simulated VGCC calcium from spiking, if that option is selected,
// and performs time-integration of VgccCa
func (lc *LearnCaParams) VgccCaFromSpike(ctx *Context, ni, di uint32) {
if lc.SpikeVGCC.IsTrue() {
Neurons.Set(lc.SpikeVgccCa*Neurons.Value(int(ni), int(di), int(Spike)), int(ni), int(di), int(VgccCa))
}
Neurons.SetAdd(Neurons.Value(int(ni), int(di), int(VgccCa))-lc.VgccDt*Neurons.Value(int(ni), int(di), int(VgccCaInt)), int(ni), int(di), int(VgccCaInt))
// Dt only affects decay, not rise time
}
// LearnCas updates the LearnCa value and its cascaded values, based on NMDA, VGCC Ca
// it first calls VgccCa to update the spike-driven version of that variable, and
// perform its time-integration.
func (lc *LearnCaParams) LearnCas(ctx *Context, ni, di uint32) {
lc.VgccCaFromSpike(ctx, ni, di)
Neurons.Set(lc.NormInv*(Neurons.Value(int(ni), int(di), int(NmdaCa))+Neurons.Value(int(ni), int(di), int(VgccCaInt))), int(ni), int(di), int(LearnCa))
Neurons.SetAdd(lc.Dt.MDt*(Neurons.Value(int(ni), int(di), int(LearnCa))-Neurons.Value(int(ni), int(di), int(LearnCaM))), int(ni), int(di), int(LearnCaM))
Neurons.SetAdd(lc.Dt.PDt*(Neurons.Value(int(ni), int(di), int(LearnCaM))-Neurons.Value(int(ni), int(di), int(LearnCaP))), int(ni), int(di), int(LearnCaP))
Neurons.SetAdd(lc.Dt.DDt*(Neurons.Value(int(ni), int(di), int(LearnCaP))-Neurons.Value(int(ni), int(di), int(LearnCaD))), int(ni), int(di), int(LearnCaD))
Neurons.Set(Neurons.Value(int(ni), int(di), int(LearnCaP))-Neurons.Value(int(ni), int(di), int(LearnCaD)), int(ni), int(di), int(CaDiff))
}
//////// TrgAvgActParams
// TrgAvgActParams govern the target and actual long-term average activity in neurons.
// Target value is adapted by neuron-wise error and difference in actual vs. target.
// drives synaptic scaling at a slow timescale (Network.SlowInterval).
type TrgAvgActParams struct {
// GiBaseInit sets an initial [GiBase] value, as a proportion of TrgRange.Max - [TrgAvg].
// This gives neurons differences in intrinsic inhibition / leak as a starting bias.
// This is independent of using the target values to scale synaptic weights. Only used if > 0.
GiBaseInit float32 `default:"0"`
// RescaleOn is whether to use target average activity mechanism to rescale
// synaptic weights, so that activity tracks the target values.
RescaleOn slbool.Bool `default:"true"`
// ErrLRate is the learning rate for adjustments to [TrgAvg] value based on the
// neuron-level error signal. Population TrgAvg values are renormalized to
// a fixed overall average, in TrgRange. Generally, deviating from the default value
// of this parameter doesn't make much difference.
ErrLRate float32 `default:"0.02"`
// SynScaleRate is a rate parameter for how much to scale synaptic weights
// in proportion to the [AvgDif] between target and actual proportion activity.
// This determines the effective strength of the constraint, and larger models
// may need more than the weaker default value.
SynScaleRate float32 `default:"0.005,0.0002"`
// SubMean is the amount of the mean [TrgAvg] change to subtract when updating.
// 1 = full zero sum changes. 1 works best in general, but in some cases it
// may be better to start with 0 and then increase using network SetSubMean
// method at a later point.
SubMean float32 `default:"0,1"`
// Permute the order of TrgAvg values within layer. Otherwise they are just
// assigned in order from highest to lowest for easy visualization.
// Generally must be true if any topographic weights are being used.
Permute slbool.Bool `default:"true"`
// Pool means use pool-level target values if pool-level inhibition and
// 4D pooled layers are present. If pool sizes are relatively small,
// then may not be useful to distribute targets just within pool.
Pool slbool.Bool
pad int32
// TrgRange is the range of target normalized average activations.
// Individual neuron [TrgAvg] values are assigned values within this range,
// and clamped within this range. This is a critical parameter and the default
// usually works best.
TrgRange minmax.F32 `default:"{'Min':0.5,'Max':2}"`
}
func (ta *TrgAvgActParams) Update() {
}
func (ta *TrgAvgActParams) Defaults() {
ta.RescaleOn.SetBool(true)
ta.ErrLRate = 0.02
ta.SynScaleRate = 0.005
ta.SubMean = 1 // 1 in general beneficial
ta.TrgRange.Set(0.5, 2)
ta.Permute.SetBool(true)
ta.Pool.SetBool(true)
ta.Update()
}
func (ta *TrgAvgActParams) ShouldDisplay(field string) bool {
switch field {
case "RescaleOn", "GiBaseInit":
return true
case "TrgRange":
return ta.RescaleOn.IsTrue() || ta.GiBaseInit > 0
default:
return ta.RescaleOn.IsTrue()
}
}
//////// RLRateParams
// RLRateParams are recv neuron learning rate modulation parameters.
// Has two factors: the derivative of the sigmoid based on CaD
// activity levels, and based on the phase-wise differences in activity (Diff).
type RLRateParams struct {
// On toggles use of learning rate modulation.
On slbool.Bool `default:"true"`
// SigmoidLinear uses a linear sigmoid function: if act > .5: 1-act; else act
// otherwise use the actual sigmoid derivative which is squared: a(1-a).
SigmoidLinear slbool.Bool `default:"true"`
// SigmoidMin is the minimum learning rate multiplier for sigmoidal
// act (1-act) factor, which prevents lrate from going too low for extreme values.
// Set to 1 to disable Sigmoid derivative factor, which is default for Target layers.
SigmoidMin float32 `default:"0.05,1"`
// Diff modulates learning rate as a function of plus - minus differences.
Diff slbool.Bool
// SpikeThr is the threshold on Max(CaP, CaD) below which Min lrate applies.
// Must be > 0 to prevent div by zero.
SpikeThr float32 `default:"0.1"`
// DiffThr is the threshold on recv neuron error delta, i.e., |CaP - CaD|
//
// below which lrate is at Min value.
DiffThr float32 `default:"0.02"`
// Min is the minimum learning rate value when |CaP - CaD| Diff is below DiffThr.
Min float32 `default:"0.001"`
pad int32
}
func (rl *RLRateParams) Update() {
}
func (rl *RLRateParams) Defaults() {
rl.On.SetBool(true)
rl.SigmoidLinear.SetBool(true)
rl.SigmoidMin = 0.05
rl.Diff.SetBool(true)
rl.SpikeThr = 0.1
rl.DiffThr = 0.02
rl.Min = 0.001
rl.Update()
}
func (rl *RLRateParams) ShouldDisplay(field string) bool {
switch field {
case "On":
return true
case "Diff", "SigmoidMin", "SigmoidLinear":
return rl.On.IsTrue()
default:
return rl.On.IsTrue() && rl.Diff.IsTrue()
}
}
// RLRateSigDeriv returns the sigmoid derivative learning rate
// factor as a function of spiking activity, with mid-range values having
// full learning and extreme values a reduced learning rate:
// deriv = 4*act*(1-act) or linear: if act > .5: 2*(1-act); else 2*act
// The activity should be CaP and the layer maximum is used
// to normalize that to a 0-1 range.
func (rl *RLRateParams) RLRateSigDeriv(act float32, laymax float32) float32 {
if rl.On.IsFalse() || laymax == 0 {
return 1.0
}
ca := min(act/laymax, 1.0)
var lr float32
if rl.SigmoidLinear.IsTrue() {
if ca < 0.5 {
lr = 2 * ca
} else {
lr = 2 * (1 - ca)
}
} else {
lr = 4.0 * ca * (1 - ca) // .5 * .5 = .25 = peak
}
if lr < rl.SigmoidMin {
lr = rl.SigmoidMin
}
return lr
}
// RLRateDiff returns the learning rate as a function of difference between
// CaP and CaD values
func (rl *RLRateParams) RLRateDiff(scap, scad float32) float32 {
if rl.On.IsFalse() || rl.Diff.IsFalse() {
return 1.0
}
smax := math32.Max(scap, scad)
if smax > rl.SpikeThr { // avoid div by 0
dif := math32.Abs(scap - scad)
if dif < rl.DiffThr {
return rl.Min
}
return (dif / smax)
}
return rl.Min
}
// LearnNeuronParams manages learning-related parameters at the neuron-level.
// This is mainly the running average activations that drive learning
type LearnNeuronParams struct {
// CaLearn parameterizes the neuron-level calcium signals driving learning:
// LearnCa = NMDA + VGCC Ca sources, where VGCC can be simulated from spiking
// or use the more complex and dynamic VGCC channel directly. LearnCa is then
// integrated in a cascading manner at multiple time scales:
// LearnCaM (as in calmodulin), LearnCaP (ltP, CaMKII, plus phase),
// LearnCaD (ltD, DAPK1, minus phase).
CaLearn LearnCaParams `display:"inline"`
// CaSpike parameterizes the neuron-level spike-driven calcium signals:
// CaM (calmodulin), CaP (ltP, CaMKII, plus phase), CaD (ltD, DAPK1, minus phase).
// These values are used in various cases as a proxy for the activation (spiking)
// based learning signal.
CaSpike kinase.CaSpikeParams `display:"inline"`
// NMDA channel parameters used for learning, vs. the ones driving activation.
// This allows exploration of learning parameters independent of their effects
// on active maintenance contributions of NMDA, and may be supported by different
// receptor subtypes.
LearnNMDA chans.NMDAParams `display:"inline"`
// TrgAvgAct has the synaptic scaling parameters for regulating overall average
// activity compared to neuron's own target level.
TrgAvgAct TrgAvgActParams `display:"inline"`
// RLRate has the recv neuron learning rate modulation params: an additional
// error-based modulation of learning for receiver side:
// RLRate = |CaP - CaD| / Max(CaP, CaD)
RLRate RLRateParams `display:"inline"`
// NeuroMod parameterizes neuromodulation effects on learning rate and activity,
// as a function of layer-level DA and ACh values, which are updated from global
// Context values, and computed from reinforcement learning algorithms.
NeuroMod NeuroModParams `display:"inline"`
}
func (ln *LearnNeuronParams) Update() {
ln.CaLearn.Update()
ln.CaSpike.Update()
ln.LearnNMDA.Update()
ln.TrgAvgAct.Update()
ln.RLRate.Update()
ln.NeuroMod.Update()
}
func (ln *LearnNeuronParams) Defaults() {
ln.CaLearn.Defaults()
ln.CaSpike.Defaults()
ln.LearnNMDA.Defaults()
ln.LearnNMDA.ITau = 1
ln.LearnNMDA.Update()
ln.TrgAvgAct.Defaults()
ln.RLRate.Defaults()
ln.NeuroMod.Defaults()
}
// InitNeuronCa initializes the neuron-level calcium learning and spking variables.
// Called by InitWeights (at start of learning).
func (ln *LearnNeuronParams) InitNeuronCa(ctx *Context, ni, di uint32) {
Neurons.Set(0, int(ni), int(di), int(GnmdaLrn))
Neurons.Set(0, int(ni), int(di), int(NmdaCa))
Neurons.Set(0, int(ni), int(di), int(VgccCa))
Neurons.Set(0, int(ni), int(di), int(VgccCaInt))
Neurons.Set(0, int(ni), int(di), int(LearnCa))
Neurons.Set(0, int(ni), int(di), int(CaM))
Neurons.Set(0, int(ni), int(di), int(CaP))
Neurons.Set(0, int(ni), int(di), int(CaD))
Neurons.Set(0, int(ni), int(di), int(CaSyn))
Neurons.Set(0, int(ni), int(di), int(LearnCaM))
Neurons.Set(0, int(ni), int(di), int(LearnCaP))
Neurons.Set(0, int(ni), int(di), int(LearnCaD))
Neurons.Set(0, int(ni), int(di), int(CaDiff))
}
// LearnNMDAFromRaw updates the separate NMDA conductance and calcium values
// based on GeTot = GeRaw + external ge conductance. These are the variables
// that drive learning -- can be the same as activation but also can be different
// for testing learning Ca effects independent of activation effects.
func (ln *LearnNeuronParams) LearnNMDAFromRaw(ctx *Context, ni, di uint32, geTot float32) {
geEff := max(geTot, 0.0)
vmd := Neurons.Value(int(ni), int(di), int(VmDend))
Neurons.Set(ln.LearnNMDA.NMDASyn(Neurons.Value(int(ni), int(di), int(GnmdaLrn)), geEff), int(ni), int(di), int(GnmdaLrn))
gnmda := ln.LearnNMDA.Gnmda(Neurons.Value(int(ni), int(di), int(GnmdaLrn)), vmd)
Neurons.Set(float32(gnmda*ln.LearnNMDA.CaFromV(vmd)), int(ni), int(di), int(NmdaCa))
}
// CaFromSpike updates all spike-driven calcium variables, including LearnCa and CaSpike.
// Computed after new activation for current cycle is updated.
func (ln *LearnNeuronParams) CaFromSpike(ctx *Context, ni, di uint32) {
caM := Neurons.Value(int(ni), int(di), int(CaM))
caP := Neurons.Value(int(ni), int(di), int(CaP))
caD := Neurons.Value(int(ni), int(di), int(CaD))
spike := Neurons.Value(int(ni), int(di), int(Spike))
ln.CaSpike.CaMFromSpike(spike, &caM, &caP, &caD)
Neurons.Set(caM, int(ni), int(di), int(CaM))
Neurons.Set(caP, int(ni), int(di), int(CaP))
Neurons.Set(caD, int(ni), int(di), int(CaD))
caSyn := Neurons.Value(int(ni), int(di), int(CaSyn))
caSyn = ln.CaSpike.CaSynFromSpike(spike, caSyn)
Neurons.Set(caSyn, int(ni), int(di), int(CaSyn))
ln.CaLearn.LearnCas(ctx, ni, di)
}
//////// SWtParams
// SigFun is the sigmoid function for value w in 0-1 range, with gain and offset params
func SigFun(w, gain, off float32) float32 {
if w <= 0 {
return 0
}
if w >= 1 {
return 1
}
return (1 / (1 + math32.Pow((off*(1-w))/w, gain)))
}
// SigFun61 is the sigmoid function for value w in 0-1 range, with default gain = 6, offset = 1 params
func SigFun61(w float32) float32 {
if w <= 0 {
return 0
}
if w >= 1 {
return 1
}
pw := (1 - w) / w
return (1 / (1 + pw*pw*pw*pw*pw*pw))
}
// SigInvFun is the inverse of the sigmoid function
func SigInvFun(w, gain, off float32) float32 {
if w <= 0 {
return 0
}
if w >= 1 {
return 1
}
return 1.0 / (1.0 + math32.Pow((1.0-w)/w, 1/gain)/off)
}
// SigInvFun61 is the inverse of the sigmoid function, with default gain = 6, offset = 1 params
func SigInvFun61(w float32) float32 {
if w <= 0 {
return 0
}
if w >= 1 {
return 1
}
rval := 1.0 / (1.0 + math32.Pow((1.0-w)/w, 1.0/6.0))
return rval
}
// SWtInitParams for initial SWt (slow, structural weight) values.
type SWtInitParams struct {
// SPct is how much of the initial random weights to capture in the
// slow, structural SWt values, with the rest going into the online leanring
// LWt values. 1 gives the strongest initial biasing effect, for larger
// models that need more structural support. 0.5 should work for most models
// where stronger constraints are not needed.
SPct float32 `min:"0" max:"1" default:"0,1,0.5"`
// Mean is the target mean weight value across receiving neuron's pathway.
// The mean SWt values are constrained to remain at this value.
// Some pathways may benefit from lower mean of .4.
Mean float32 `default:"0.5,0.4"`
// Var is the initial variance in weight values, prior to constraints.
Var float32 `default:"0.25"`
// Sym symmetrizes the initial weight values with those in reciprocal pathway.
// Typically true for bidirectional excitatory connections.
Sym slbool.Bool `default:"true"`
}
func (sp *SWtInitParams) Defaults() {
sp.SPct = 0.5
sp.Mean = 0.5
sp.Var = 0.25
sp.Sym.SetBool(true)
}
func (sp *SWtInitParams) Update() {
}
// SWtAdaptParams manages adaptation of the [SWt] (slow, structural weight) values.
type SWtAdaptParams struct {
// On enables adaptation of [SWt] values at a slower time scale. If false, SWt
// values are not updated, in which case it is generally good to set Init.SPct=0 too.
On slbool.Bool
// LRate is the learning rate multiplier on the accumulated [DWt] values
// (which already have fast LRate applied), to drive updating of [SWt]
// during slow outer loop updating. Lower values impose stronger constraints,
// for larger networks that need more structural support, e.g., 0.001 is better
// after 1,000 epochs in large models. 0.1 is fine for smaller models.
LRate float32 `default:"0.1,0.01,0.001,0.0002"`
// SubMean is the amount of the mean to subtract from [SWt] delta when updating,
// to impose a zero-sum constraint on overall structural weight strengths.
// Generally best to set to 1. There is a separate SubMean factor for [LWt].
SubMean float32 `default:"1"`
// SigGain is the gain of the sigmoidal constrast enhancement function
// used to transform learned, linear [LWt] values into [Wt] values.
// This is critical to offset the damping effect of exponential soft bounding,
// but some special cases with different learning rules may benefit by making
// this linear (1) instead.
SigGain float32 `default:"6"`
}
func (sp *SWtAdaptParams) Defaults() {
sp.On.SetBool(true)
sp.LRate = 0.1
sp.SubMean = 1
sp.SigGain = 6
sp.Update()
}
func (sp *SWtAdaptParams) Update() {
}
func (sp *SWtAdaptParams) ShouldDisplay(field string) bool {
switch field {
case "On":
return true
default:
return sp.On.IsTrue()
}
}
// SWtParams manages structural, slowly adapting weight values [SWt],
// in terms of initialization and updating over course of learning.
// SWts impose initial and slowly adapting constraints on neuron connectivity
// to encourage differentiation of neuron representations and overall good behavior
// in terms of not hogging the representational space.
// The [TrgAvg] activity constraint is not enforced through SWt: it needs to be
// more dynamic and is supported by the regular learned weights [LWt].
type SWtParams struct {
// Init controls the initialization of [SWt] values.
Init SWtInitParams `display:"inline"`
// Adapt controls adaptation of [SWt] values in response to [LWt] learning.
Adapt SWtAdaptParams `display:"inline"`
// Limit limits the range of [SWt] values, so that they do not fully
// determine the effective overall weight value.
Limit minmax.F32 `default:"{'Min':0.2,'Max':0.8}" display:"inline"`
}
func (sp *SWtParams) Defaults() {
sp.Init.Defaults()
sp.Adapt.Defaults()
sp.Limit.Set(0.2, 0.8)
}
func (sp *SWtParams) Update() {
sp.Init.Update()
sp.Adapt.Update()
}
// WtVal returns the effective Wt value given the SWt and LWt values
func (sp *SWtParams) WtValue(swt, lwt float32) float32 {
return swt * sp.SigFromLinWt(lwt)
}
// ClipSWt returns SWt value clipped to valid range
func (sp *SWtParams) ClipSWt(swt float32) float32 {
return sp.Limit.ClampValue(swt)
}
// ClipWt returns Wt value clipped to 0-1 range
func (sp *SWtParams) ClipWt(wt float32) float32 {
if wt > 1 {
return 1
}
if wt < 0 {
return 0
}
return wt
}
// SigFromLinWt returns sigmoidal contrast-enhanced weight from linear weight,
// centered at 1 and normed in range +/- 1 around that
// in preparation for multiplying times SWt
func (sp *SWtParams) SigFromLinWt(lw float32) float32 {
var wt float32
if sp.Adapt.SigGain == 1 {
wt = lw
} else if sp.Adapt.SigGain == 6 {
wt = SigFun61(lw)
} else {
wt = SigFun(lw, sp.Adapt.SigGain, 1)
}
return 2.0 * wt // center at 1 instead of .5
}
// LinFromSigWt returns linear weight from sigmoidal contrast-enhanced weight.
// wt is centered at 1, and normed in range +/- 1 around that,
// return value is in 0-1 range, centered at .5
func (sp *SWtParams) LinFromSigWt(wt float32) float32 {
wte := wt * 0.5
if wte < 0 {
wte = 0
} else if wte > 1 {
wte = 1
}
if sp.Adapt.SigGain == 1 {
return wte
}
if sp.Adapt.SigGain == 6 {
return SigInvFun61(wte)
}
return SigInvFun(wte, sp.Adapt.SigGain, 1)
}
// LWtFromWts returns linear, learning LWt from wt and swt.
// LWt is set to reproduce given Wt relative to given SWt base value.
func (sp *SWtParams) LWtFromWts(wt, swt float32) float32 {
rwt := wt / swt
return sp.LinFromSigWt(rwt)
}
// WtFromDWt updates the synaptic weights from accumulated weight changes.
// wt is the sigmoidal contrast-enhanced weight and lwt is the linear weight value.
func (sp *SWtParams) WtFromDWt(wt, lwt *float32, dwt, swt float32) {
if dwt == 0 {
if *wt == 0 { // restore failed wts
*wt = sp.WtValue(swt, *lwt)
}
return
}
// note: softbound happened at dwt stage
*lwt += dwt
if *lwt < 0 {
*lwt = 0
} else if *lwt > 1 {
*lwt = 1
}
*wt = sp.WtValue(swt, *lwt)
}
//gosl:end
// RandVar returns the random variance in weight value (zero mean) based on Var param
func (sp *SWtInitParams) RandVar(rnd randx.Rand) float32 {
return sp.Var * 2.0 * (rnd.Float32() - 0.5)
}
// // RandVar returns the random variance (zero mean) based on DreamVar param
// func (sp *SWtAdaptParams) RandVar(rnd randx.Rand) float32 {
// return sp.DreamVar * 2.0 * (rnd.Float32(-1) - 0.5)
// }
// InitWeightsSyn initializes weight values based on WtInit randomness parameters
// for an individual synapse.
// It also updates the linear weight value based on the sigmoidal weight value.
func (sp *SWtParams) InitWeightsSyn(ctx *Context, syni uint32, rnd randx.Rand, mean, spct float32) {
wtv := sp.Init.RandVar(rnd)
wt := mean + wtv
Synapses.Set(wt, int(syni), int(Wt))
Synapses.Set(sp.ClipSWt(mean+spct*wtv), int(syni), int(SWt))
if spct == 0 { // this is critical for weak init wt, SPCt = 0 paths
Synapses.Set(0.5, int(syni), int(SWt))
}
Synapses.Set(sp.LWtFromWts(wt, Synapses.Value(int(syni), int(SWt))), int(syni), int(LWt))
Synapses.Set(0, int(syni), int(DWt))
Synapses.Set(0, int(syni), int(DSWt))
}
// InitWeightsSynTrace initializes SynapseTrace values
// for an individual synapse.
func (sp *SWtParams) InitWeightsSynTrace(ctx *Context, syni, di uint32) {
SynapseTraces.Set(0, int(syni), int(di), int(Tr))
SynapseTraces.Set(0, int(syni), int(di), int(DTr))
SynapseTraces.Set(0, int(syni), int(di), int(DiDWt))
}
//gosl:start
// LRateParams manages learning rate parameters for scaling [DWt] delta
// weight values that then update [LWt] online learned weights.
// It has two optional modulation factors on top of a Base learning rate.
type LRateParams struct {
// Base learning rate for this pathway, which can be modulated
// by the other factors below. Generally larger networks use slower rates.
Base float32 `default:"0.04,0.1,0.2"`
// Sched is a scheduled learning rate multiplier, simulating reduction
// in plasticity over aging. Use the [Network.LRateSched] method to apply
// a given value to all pathways in the network.
Sched float32
// Mod is a dynamic learning rate modulation factor, typically driven by
// neuromodulation (e.g., dopamine).
Mod float32
// Eff is the net effective actual learning rate multiplier used in
// computing [DWt]: Eff = Mod * Sched * Base
Eff float32 `edit:"-"`
}
func (ls *LRateParams) Defaults() {
ls.Base = 0.04
ls.Sched = 1
ls.Mod = 1
ls.Update()
}
func (ls *LRateParams) Update() {
ls.UpdateEff()
}
func (ls *LRateParams) UpdateEff() {
ls.Eff = ls.Mod * ls.Sched * ls.Base
}
// Init initializes modulation values back to 1 and updates Eff
func (ls *LRateParams) Init() {
ls.Sched = 1
ls.Mod = 1
ls.UpdateEff()
}
//////// DWtParams
// DWtParams has misc parameters for computing weight changes ([DWt]) for the default
// kinase trace-based error-driven cortical learning rule, and for other specialized
// learning rules.
type DWtParams struct {
// Trace uses the default trace-based version of the kinase error-driven cortical
// learning algorithm, where the per-trial error delta is computed from
// [LearnCaP] - [LearnCaD], and the credit assignment factor is computed from the
// synaptic product of [CaSyn], integrated over [CaBins] separately on the
// sender and receiver neurons, which are then multiplied at each synapse and
// integrated to efficiently compute synaptic CaP and CaD factors.
// This synaptic CaD is integrated across theta cycle trials with the Tau
// parameter to produce the final multiplicative credit assignment factor.
// If Trace = false, then the synaptic CaP - CaD delta is used directly as
// the error-driven learning signal, precluding the longer-timescale trace
// integration factor (Trace = false is automatically used for Target layers).
Trace slbool.Bool `default:"true"`
// Tau is the time constant for integrating the synaptic trace [Tr]
// over the theta cycle learning timescale. Larger values (greater than 1)
// produce longer time windows of integration, and should only be used when
// there is temporal structure to be learned across these longer timescales.
Tau float32 `default:"1,2,4"`
// CaPScale is a separate multiplier for the CaP component of synaptic calcium, to
// allow separate weighting of potentiation (CaP) vs. depression (CaD) factors.
// An increased CaP level results in an overall potentiation bias, which acts
// like a hebbian learning factor. This can be bad for long-term synaptic stability
// and lead to the hog-unit problem, and the default of 0.95 is set to mitigate
// this hogging dynamic.
CaPScale float32 `default:"0.95,1"`
// SubMean is the amount of the mean [dWt] to subtract for updating the online
// learning [LWt] values, producing a zero-sum effect. 1.0 = full zero-sum dWt.
// Only applies to non-zero DWts. There is a separate such factor for [SWt].
// Typically set to 0 for standard trace learning pathways, although some require it
// for stability over the long haul. Can use [Network.SetSubMean] to set to 1 after
// significant early learning has occurred with 0.
// Some special path types (e.g., Hebb) benefit from SubMean = 1 always.
SubMean float32 `default:"0,1"`
// LearnThr is the threshold for learning, for specialized learning algorithms.
// This is not relevant for the standard kinase error-driven cortical learning algorithm.
// In Matrix and VSPatch it applies to normalized GeIntNorm value: setting this relatively
// high encourages sparser representations.
LearnThr float32
// Dt rate = 1 / tau
Dt float32 `display:"-" json:"-" xml:"-" edit:"-"`
pad, pad1 float32
}
func (tp *DWtParams) Defaults() {
tp.Trace.SetBool(true)
tp.Tau = 1
tp.CaPScale = 0.95
tp.SubMean = 0
tp.LearnThr = 0
tp.Update()
}
func (tp *DWtParams) Update() {
tp.Dt = 1.0 / tp.Tau
}
// TrFromCa returns updated trace factor as function of a
// synaptic calcium update factor and current trace
func (tp *DWtParams) TrFromCa(tr float32, ca float32) float32 {
return tr + tp.Dt*(ca-tr)
}
//////// HebbParams
// HebbParams for optional hebbian learning that replaces the
// default learning rule, based on S = sending activity,
// R = receiving activity
type HebbParams struct {
// On turns on the use of the Hebbian learning rule instead of the default.
On slbool.Bool
// Up is the strength multiplier for hebbian increases, based on R * S * (1-LWt).
Up float32 `default:"0.5"`
// Down is the strength multiplier for hebbian decreases, based on R * (1 - S) * LWt.
Down float32 `default:"1"`
pad float32
}
func (hp *HebbParams) Defaults() {
hp.Up = 0.5
hp.Down = 1
}
func (hp *HebbParams) Update() {
}
func (hp *HebbParams) ShouldDisplay(field string) bool {
switch field {
case "On":
return true
default:
return hp.On.IsTrue()
}
}
//////// LearnSynParams
// LearnSynParams manages learning-related parameters at the synapse-level.
type LearnSynParams struct {
// Learn enables learning for this pathway.
Learn slbool.Bool
pad, pad1, pad2 int32
// LRateParams manages learning rate parameters for scaling [DWt] delta
// weight values that then update [LWt] online learned weights.
// It has two optional modulation factors on top of a Base learning rate.
LRate LRateParams `display:"inline"`
// DWtParams has misc parameters for computing weight changes ([DWt]) for the default
// trace-based cortical learning rule and for other specialized learning rules.
DWt DWtParams `display:"inline"`
// SynCaBin computes synaptic calcium values as a product of the
// separately-integrated and binned sender and receiver SynCa values.
// Binning always happens at 10 msec intervals, but the product term
// is more robust if computed on a longer effective timescale, which
// is determined by weighting factors for the t-1 and t-2 bins when
// computing the neural SynCa for time bin t.
SynCaBin kinase.SynCaBin `display:"inline"`
// hebbian learning option, which overrides the default learning rules
Hebb HebbParams `display:"inline"`
}
func (ls *LearnSynParams) Update() {
ls.LRate.Update()
ls.DWt.Update()
ls.SynCaBin.Update()
ls.Hebb.Update()
}
func (ls *LearnSynParams) Defaults() {
ls.Learn.SetBool(true)
ls.LRate.Defaults()
ls.DWt.Defaults()
ls.SynCaBin.Defaults()
ls.Hebb.Defaults()
}
func (ls *LearnSynParams) ShouldDisplay(field string) bool {
switch field {
case "Learn":
return true
default:
return ls.Learn.IsTrue()
}
}
// CHLdWt returns the error-driven weight change component for a
// CHL contrastive hebbian learning rule, optionally using the checkmark
// temporally eXtended Contrastive Attractor Learning (XCAL) function
func (ls *LearnSynParams) CHLdWt(suCaP, suCaD, ruCaP, ruCaD float32) float32 {
srp := suCaP * ruCaP
srd := suCaD * ruCaD
return srp - srd
}
// DeltaDWt returns the error-driven weight change component for a
// simple delta between a minus and plus phase factor, optionally using the checkmark
// temporally eXtended Contrastive Attractor Learning (XCAL) function
func (ls *LearnSynParams) DeltaDWt(plus, minus float32) float32 {
return plus - minus
}
//gosl:end
//////// LRateMod
// LRateMod implements global learning rate modulation, based on a performance-based
// factor, for example error. Increasing levels of the factor = higher learning rate.
// This can be added to a Sim and called prior to DWt() to dynamically change lrate
// based on overall network performance. It is not used by default in the standard params.
type LRateMod struct {
// toggle use of this modulation factor
On slbool.Bool
// baseline learning rate -- what you get for correct cases
Base float32 `min:"0" max:"1"`
pad, pad1 int32
// defines the range over which modulation occurs for the modulator factor -- Min and below get the Base level of learning rate modulation, Max and above get a modulation of 1
Range minmax.F32
}
func (lr *LRateMod) Defaults() {
lr.On.SetBool(true)
lr.Base = 0.2
lr.Range.Set(0.2, 0.8)
}
func (lr *LRateMod) Update() {
}
func (lr *LRateMod) ShouldDisplay(field string) bool {
switch field {
case "On":
return true
default:
return lr.On.IsTrue()
}
}
// Mod returns the learning rate modulation factor as a function
// of any kind of normalized modulation factor, e.g., an error measure.
// If fact <= Range.Min, returns Base
// If fact >= Range.Max, returns 1
// otherwise, returns proportional value between Base..1
func (lr *LRateMod) Mod(fact float32) float32 {
lrm := lr.Range.NormValue(fact) // clips to 0-1 range
md := lr.Base + lrm*(1-lr.Base) // resulting mod is in Base-1 range
return md
}
// LRateMod calls LRateMod on given network, using computed Mod factor
// based on given normalized modulation factor
// (0 = no error = Base learning rate, 1 = maximum error).
// returns modulation factor applied.
func (lr *LRateMod) LRateMod(net *Network, fact float32) float32 {
if lr.Range.Max == 0 {
lr.Defaults()
}
if lr.On.IsFalse() {
return 1
}
md := lr.Mod(fact)
net.LRateMod(md)
return md
}