-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplyNN.R
624 lines (463 loc) · 30.1 KB
/
applyNN.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
################################################################################
### The locations of various files and directories
# The location of "results" files
RESULTS_DIR = "/var/www/html/actigraph/results/"
# The full path to the saved nnet fit to use (including file name)
NNET_PATH = "/var/www/cgi-bin/actigraph/nnet3ests.RData"
# The path to the "status" file. This is passed in from the R.cgi script
STATUS_FILE = Sys.getenv("CURRENT_STATUS_FILE");
# The path to the "warnings" file. This is passed in from the R.cgi script
WARNINGS_FILE = Sys.getenv("WARNINGS_FILE");
# The path to the file with code related to wear time.
WEARTIME_CODE_FILE = "/var/www/cgi-bin/actigraph/weartimefuncts.R";
# The path to the file with code for reading in the data file.
READDATA_CODE_FILE = "/var/www/cgi-bin/actigraph/readDataFile.R";
# The path to the file with code for sojourn estimation.
SOJOURNESTIMATION_CODE_FILE = "/var/www/cgi-bin/actigraph/sojournEstimation.R";
# The path to the file with code for computing/estimating number of bouts.
BOUTESTIMATION_CODE_FILE = "/var/www/cgi-bin/actigraph/boutsComputation.R";
# The path to the file with code for interacting with the website.
WEBSITEINTERACT_CODE_FILE = "/var/www/cgi-bin/actigraph/websiteInteraction.R";
################################################################################
### Load functionality for interacting with the website
### This consists of the get.lock, unlock, status.update, and warnings.update functions.
source(WEBSITEINTERACT_CODE_FILE);
### Load functionality for reading Actigraph data files
### This consists of the read.actigraph.GT3X function.
source(READDATA_CODE_FILE);
################################################################################
### Here's the actual statistics
acf.lag1 <- function(x) {
# computes lag one autocorrelation
n <- length(x)
a <- mean((x[-1]-mean(x[-1]))*(x[-n]-mean(x[-n])))
v <- var(x)
if ((v==0)|(is.na(v))) {
val <- 0
} else {
val <- a/v
}
return(val)
}
# update the status
status.update("Processing File... Loading data into R")
# read in the actigraph data
#data <- read.actigraph.GT3X(Sys.getenv("HEADER_FILE"), Sys.getenv("DATA_FILE"))
temp <- read.actigraph.GT3X(Sys.getenv("HEADER_FILE"), Sys.getenv("DATA_FILE"))
data <- temp[[1]]
start.time <- temp[[2]]
n <- nrow(data)
save.image("/var/www/html/actigraph/system/imageDR.RData")
# read in the options
options <- read.csv(Sys.getenv("OPTIONS_FILE"),colClasses="character")
optNames <- names(options);
parse.time <- function(time,date)
{
if(length(strsplit(time,":")[[1]]) == 2)
{
if(nchar(strsplit(date,"/")[[1]][3]) == 4) {
return( strptime(paste(time,date),"%H:%M %m/%d/%Y", tz="GMT") )
} else if(nchar(strsplit(date,"/")[[1]][3]) == 2) {
return( strptime(paste(time,date),"%H:%M %m/%d/%y", tz="GMT") )
} else {
warnings.update("WARNING: Invalid entry in on/off record. Year must be either 2 or 4 digits.")
return( "ERROR" )
}
} else if(length(strsplit(time,":")[[1]]) == 3)
{
if(nchar(strsplit(date,"/")[[1]][3]) == 4) {
return( strptime(paste(time,date),"%H:%M:%S %m/%d/%Y", tz="GMT") )
} else if(nchar(strsplit(date,"/")[[1]][3]) == 2) {
return( strptime(paste(time,date),"%H:%M:%S %m/%d/%y", tz="GMT") )
} else {
warnings.update("WARNING: Invalid entry in on/off record. Year must be either 2 or 4 digits.")
return( "ERROR" )
}
} else
{
warnings.update(paste("WARNING: Invalid entry in on/off record.", time, date, "does not follow a valid format. Time must be entered in the format HH:MM:SS or HH:MM", sep=" "))
return( "ERROR" )
}
}
data.indices.when.on <- function(on.off.record, data) {
n.on.off <- dim(on.off.record)[1]
first.start <- as.numeric(data[1,"time"])
n <- dim(data)[1]
inds <- c()
for (i in seq_len(n.on.off))
{
start <- as.numeric(parse.time(paste(on.off.record$Time.Start[i]),paste(on.off.record$Date.Start[i])))
end <- as.numeric(parse.time(paste(on.off.record$Time.Stop[i]),paste(on.off.record$Date.Stop[i])))
start.index <- as.numeric(start) - first.start
end.index <- as.numeric(end) - first.start + 1
if(end.index - start.index > 0)
{
inds <- c(inds,start.index:end.index)
if(sum(duplicated(inds)) > 0) {
warnings.update(paste("WARNING: On period", on.off.record$Time.Start[i], on.off.record$Date.Start[i], "to", on.off.record$Time.Stop[i], on.off.record$Date.Stop[i], "overlaps with one or more previous entries in the on/off record. Overlapping on/off entries were combined into one on period.", sep=" "))
inds <- unique(inds)
}
} else {
warnings.update(paste("WARNING: Invalid entry in on/off record. Start time", on.off.record$Time.Start[i], on.off.record$Date.Start[i], "is not before stop time", on.off.record$Time.Stop[i], on.off.record$Date.Stop[i], ". This entry was ignored.", sep=" "))
}
}
return(inds)
}
if((length(grep("NN",options$methods)) == 1) || (length(grep("Crouter",options$methods)) == 1) || (length(grep("Freedson",options$methods)) == 1) || (length(grep("Other",options$methods)) == 1)) {
source(BOUTESTIMATION_CODE_FILE);
}
on.off.file <- Sys.getenv("ON_OFF_FILE")
if("generateOnOff" %in% optNames) {
generate.on.off <- options$generateOnOff
}
# If an on/off record was supplied, read the information in from it.
# Compute indices of the data vector when the Actigraph was off.
# Do some validation of the times in the on/off record.
if(on.off.file != "")
{
on.off.record <- read.csv(on.off.file)
on.off.record <- on.off.record[on.off.record$Subject == options$subject,]
on.off.record <- on.off.record[on.off.record$Visit == options$visit,]
# If there were no entries in the on/off record for the given subject, emit a warning and use an auto-generated on/off record instead.
if(dim(on.off.record)[1] == 0) {
warnings.update("WARNING: There were no entries in the uploaded on/off record for the subject specified for this data file. Treating all time in the data file as on.");
on.off.file <- "";
}
inds.when.on <- data.indices.when.on(on.off.record, data)
if(on.off.file != "") {
if(max(inds.when.on) < 1) {
warnings.update(paste("WARNING: All on times in the uploaded on/off record occur before the first time of data collection in the uploaded Actigraph data file, ", data[1,"time"], ". Treating all time in the data file as on.", sep=""))
on.off.file <- "";
} else if(min(inds.when.on) > n) {
warnings.update(paste("WARNING: All on times in the uploaded on/off record occur after the last time of data collection in the uploaded Actigraph data file, ", data[n,"time"], ". Treating all time in the data file as on.", sep=""))
on.off.file <- "";
} else if(min(inds.when.on) < 1) {
warnings.update("WARNING: The uploaded on/off record specifies on times before the first time of data collection in the uploaded Actigraph data file. These times have been ignored.")
inds.when.on <- inds.when.on[inds.when.on >= 1]
} else if(max(inds.when.on) > n) {
warnings.update("WARNING: The uploaded on/off record specifies on times after the last time of data collection in the uploaded Actigraph data file. These times have been ignored.")
inds.when.on <- inds.when.on[inds.when.on <= n]
}
}
if (length(inds.when.on)==0 && on.off.file != "") {
warnings.update("WARNING: The uploaded on/off record did not contain any valid on times during the period of data collection in the uploaded Actigraph data file. Treating all time in the data file as on.")
on.off.file <- "";
} else if(length(inds.when.on) > 0 && on.off.file != "") {
temp.inds.when.on <- c(0,sort(inds.when.on),length(data[["counts"]]) + 1)
gap.inds <- which( (temp.inds.when.on[-1] - temp.inds.when.on[-length(temp.inds.when.on)]) > 86400 )
for(i in seq_along(gap.inds)) {
warnings.update(paste("WARNING: The uploaded on/off record did not contain any on time for a period of 24 or more hours from ", data[temp.inds.when.on[gap.inds[i]] + 1, "time"], " to ", data[temp.inds.when.on[gap.inds[i] + 1], "time"], ".", sep=""))
}
}
}
# If the user selected that option, generate an on/off record
if(generate.on.off == "generateOnOff")
{
# load functionality for estimating wear time. This code implements
# the default wear time estimation method in library(PhysicalActivity) to estimate an on off record.
# (It doesn't require the library to be loaded though.)
source(WEARTIME_CODE_FILE);
if("generateOnOffParamFrame" %in% optNames && "generateOnOffParamAllowanceFrame" %in% optNames) {
generate.on.off.Frame <- as.numeric(options$generateOnOffParamFrame);
generate.on.off.AllowanceFrame <- as.numeric(options$generateOnOffParamAllowanceFrame);
} else {
warnings.update(paste("WARNING: One or both of the required parameters for generating an on/off record was not submitted. Proceeding with the default values of Frame = 90 and Allowance Frame = 2."))
generate.on.off.Frame <- 90;
generate.on.off.AllowanceFrame <- 2;
}
junk <- est.on.off( data.frame(counts = data$counts, time = as.character(data$time)), generate.on.off.Frame, generate.on.off.AllowanceFrame )
on.start.dates <- paste(substr(junk$on.start.times,6,7),substr(junk$on.start.times,9,10),substr(junk$on.start.times,3,4),sep="/")
on.start.times <- substr(junk$on.start.times,12,19)
on.end.dates <- paste(substr(junk$off.start.times,6,7),substr(junk$off.start.times,9,10),substr(junk$off.start.times,3,4),sep="/")
on.end.times <- substr(junk$off.start.times,12,19)
on.off.record <- data.frame(options$subject,options$visit,on.start.dates, on.start.times, on.end.dates, on.end.times)
names(on.off.record) <- c("Subject", "Visit", "Date.Start", "Time.Start", "Date.Stop", "Time.Stop")
inds.when.on <- data.indices.when.on(on.off.record, data)
}
if((generate.on.off == "" && on.off.file == "") || generate.on.off == "allOn") {
on.start.dates <- paste(substr(data[1,"time"],6,7),substr(data[1,"time"],9,10),substr(data[1,"time"],3,4),sep="/")
on.start.times <- substr(data[1,"time"],12,19)
n <- length(data[["counts"]])
on.end.dates <- paste(substr(data[n,"time"],6,7),substr(data[n,"time"],9,10),substr(data[n,"time"],3,4),sep="/")
on.end.times <- substr(data[n,"time"],12,19)
on.off.record <- data.frame(options$subject, options$visit, on.start.dates, on.start.times, on.end.dates, on.end.times)
names(on.off.record) <- c("Subject", "Visit", "Date.Start", "Time.Start", "Date.Stop", "Time.Stop")
inds.when.on <- data.indices.when.on(on.off.record, data)
}
if (length(inds.when.on )>0)
data[-inds.when.on,"counts"] <- 0
save.image("/var/www/html/actigraph/system/image1.RData")
# set up data frames to contain summary information by minute and by day
temp <- tapply(data$counts,data$min.as.factor,mean)*60 #use mean*60 instead of sum to account for partial minutes
sum.by.min <- data.frame(time=names(temp),cpm=as.vector(temp))
sum.by.min$day <- as.character(strptime(as.character(sum.by.min$time),"%Y-%m-%d"))
sum.by.min$day.as.factor <- factor(sum.by.min$day, levels=unique(sum.by.min$day))
# this is used in tapply's, we specify the levels here to be sure we get the order of output to be the same as the order of what we get from unique()
sum.by.day <- data.frame(subject=options$subject,visit=options$visit,day=unique(sum.by.min$day))
day.of.week <- as.character(format(strptime(sum.by.day$day, format="%Y-%m-%d"), format="%A"))
sum.by.day$weekday <- "weekday"
sum.by.day$weekday[(day.of.week == "Saturday") | (day.of.week == "Sunday")] <- "weekend"
save.image("/var/www/html/actigraph/system/image2.RData")
# build infrastructure to handle sub-intervals of the day, if the user wants them
# This code assumes that all seconds after the start time are present in the data.
interval.times <- as.character(unlist(options[optNames[grep("time+", optNames, perl = TRUE)]]))
interval.times.hours <- as.integer(substr(interval.times, start=1, stop=(nchar(interval.times) - 3)))
interval.times.mins <- as.integer(substr(interval.times, start=(nchar(interval.times) - 1), stop=(nchar(interval.times))))
interval.times.in.mins <- 60*interval.times.hours + interval.times.mins
# do some validation - make sure the times are strictly increasing.
if(length(interval.times) > 0) {
# the sorted list should be equal to the original list and all entries should be unique
# (so the list of unique entries should be of the same length as the original list)
if(!((interval.times.in.mins == sort(interval.times.in.mins)) && (length(interval.times.in.mins) == length(unique(interval.times.in.mins)))))
{
# if there were any problems, remove the list of interval times.
# (there should't be any problems - the times were validated with javascript on the site too)
# but we should still think about returning an error to the user...
rm(interval.times)
}
}
if(length(interval.times) > 0) {
#build two vectors of length 24 hours with info on which time interval each second and minute falls into
#note that the element in position 1 of this vector represents second (or minute) 0 of the day (0:00:00, or 12:00:00 AM)
day.breakdown.by.sec <- rep("not specified", 86400)
day.breakdown.by.min <- rep("not specified", 1440)
for(i in 1:(length(interval.times) - 1)) {
start.time.index <- 60*interval.times.in.mins[i] + 1
end.time.index <- 60*interval.times.in.mins[i + 1]
day.breakdown.by.sec[start.time.index:end.time.index] <- paste(interval.times[i], interval.times[i + 1], sep="-")
start.time.index <- interval.times.in.mins[i] + 1
end.time.index <- interval.times.in.mins[i + 1]
day.breakdown.by.min[start.time.index:end.time.index] <- paste(interval.times[i], interval.times[i + 1], sep="-")
}
#align the day breakdown so that it starts at the same second/minute in the day as the collected data
first.sec.of.data <- strsplit(strsplit(as.character(data[["time"]][1]), ' ')[[1]][2], ':')
first.sec.of.data <- 3600*as.integer(first.sec.of.data[[1]][1]) + 60*as.integer(first.sec.of.data[[1]][2]) + as.integer(first.sec.of.data[[1]][3]) + 1
day.breakdown.by.sec <- c(day.breakdown.by.sec[first.sec.of.data:86400], day.breakdown.by.sec[1:(first.sec.of.data - 1)])
first.min.of.data <- strsplit(strsplit(as.character(data[["time"]][1]), ' ')[[1]][2], ':')
first.min.of.data <- 60*as.integer(first.min.of.data[[1]][1]) + as.integer(first.min.of.data[[1]][2]) + 1
day.breakdown.by.min <- c(day.breakdown.by.min[first.min.of.data:1440], day.breakdown.by.min[1:(first.min.of.data - 1)])
#add a column to the data and sum.by.min data frames containing this breakdown information.
data$interval <- paste(data$day, "-", day.breakdown.by.sec)[1:(length(data$day))]
data$interval.as.factor <- factor(data$interval, levels=unique(data$interval))
# this is used in tapply's, we specify the levels here to be sure we get the order of output to be the same as the order of what we get from unique()
sum.by.min$interval <- paste(sum.by.min$day, "-", day.breakdown.by.min)[1:(length(sum.by.min$day))]
sum.by.min$interval.as.factor <- factor(sum.by.min$interval, levels=unique(sum.by.min$interval))
# this is used in tapply's, we specify the levels here to be sure we get the order of output to be the same as the order of what we get from unique()
#create a new data frame to contain summary information by sub interval of the day
sum.by.interval <- data.frame(subject=options$subject,visit=options$visit,day=unique(data$interval))
sum.by.interval$interval <- substr(sum.by.interval$day, start=14, stop=nchar(as.character(sum.by.interval$day)))
sum.by.interval$day <- substr(sum.by.interval$day, start=1, stop=10)
day.of.week <- as.character(format(strptime(sum.by.interval$day, format="%Y-%m-%d"), format="%A"))
sum.by.interval$weekday <- "weekday";
sum.by.interval$weekday[day.of.week == "Saturday" | day.of.week == "Sunday"] <- "weekend";
}
save.image("/var/www/html/actigraph/system/image3.RData")
# get the time worn in each day and, if applicable, interval.
# the variable "inds.when.on" is left over from the on/off record handling.
# onoffbysec = 0 when off and 1 when on
onoffbysec <- rep(0, length(data$counts))
onoffbysec[inds.when.on] <- 1
sum.by.day$hours.on <- tapply(onoffbysec, data$day.as.factor, sum)/3600
if(length(interval.times) > 0) {
sum.by.interval$hours.on <- tapply(onoffbysec, data$interval.as.factor, sum)/3600
}
onoffbymin <- tapply(onoffbysec,data$min.as.factor,max)
# vectors containing the day for each second and minute the actigraph was on. This is used in obtaining summary by day info. below
day.when.on.by.sec <- data[(onoffbysec == 1), "day.as.factor"]
day.when.on.by.min <- sum.by.min[(onoffbymin == 1), "day.as.factor"]
# a vector containing the interval for each second and minute the actigraph was on. This is used in obtaining summary by interval info. below
if(length(interval.times) > 0) {
interval.when.on.by.sec <- data[(onoffbysec == 1), "interval.as.factor"]
interval.when.on.by.min <- sum.by.min[(onoffbymin == 1), "interval.as.factor"]
}
save.image("/var/www/html/actigraph/system/image4.RData")
# Do whatever statistical methods were requested
# update the status
status.update("Processing File... Performing statistical analysis")
#Neural Network
if(length(grep("NN",options$methods)) == 1) {
# Load the fitted nnets and the nnet library.
load(NNET_PATH)
library(nnet)
# Load functionality for identifying sojourns
# This consists of the sojourn function.
source(SOJOURNESTIMATION_CODE_FILE);
est <- sojourn(data[["counts"]], perc.cut=0.05, perc.cut.2=0.12, perc.cut.3=0.55, too.short=10, sit.cut=90, long.soj=120)
data$nnet.METs <- est$METs.2
# update summary
nnet.METs.when.on <- data[(onoffbysec == 1), "nnet.METs"]
# nnet.acts.when.on <- data[(onoffbysec == 1), "nnet.acts"]
sum.by.day$nnet.METhrs <- as.vector(tapply(nnet.METs.when.on,day.when.on.by.sec,sum)/3600)
sum.by.day$nnet.sedentary.min <- as.vector(tapply((nnet.METs.when.on<1.5),day.when.on.by.sec,sum)/60)
sum.by.day$nnet.light.min <- as.vector(tapply((nnet.METs.when.on<3)&(nnet.METs.when.on>=1.5),day.when.on.by.sec,sum)/60)
sum.by.day$nnet.moderate.min <- as.vector(tapply((nnet.METs.when.on<6)&(nnet.METs.when.on>=3),day.when.on.by.sec,sum)/60)
sum.by.day$nnet.vigorous.min <- as.vector(tapply((nnet.METs.when.on>=6),day.when.on.by.sec,sum)/60)
# sum.by.day$nnet.min.act.min <- as.vector(tapply((nnet.acts.when.on=="minimal"),day.when.on.by.sec,sum)/60)
# sum.by.day$nnet.locomot.act.min <- as.vector(tapply((nnet.acts.when.on=="locomotion"),day.when.on.by.sec,sum)/60)
# sum.by.day$nnet.vigsp.act.min <- as.vector(tapply((nnet.acts.when.on=="vig sport"),day.when.on.by.sec,sum)/60)
# sum.by.day$nnet.house.act.min <- as.vector(tapply((nnet.acts.when.on=="household/other"),day.when.on.by.sec,sum)/60)
temp <- get.bouts.info(data$nnet.METs, data$day)
sum.by.day$nnet.num.bouts <- temp[,"num.bouts"]
sum.by.day$nnet.bout.hours <- temp[,"bout.hours"]
sum.by.day$nnet.bout.MET.hours <- temp[,"bout.MET.hours"]
#if applicable, get MET hours for each sub interval of the day
if(length(interval.times) > 0) {
sum.by.interval$nnet.METhrs <- as.vector(tapply(nnet.METs.when.on,interval.when.on.by.sec,sum)/3600)
sum.by.interval$nnet.sedentary.min <- as.vector(tapply((nnet.METs.when.on<1.5),interval.when.on.by.sec,sum)/60)
sum.by.interval$nnet.light.min <- as.vector(tapply((nnet.METs.when.on<3)&(nnet.METs.when.on>=1.5),interval.when.on.by.sec,sum)/60)
sum.by.interval$nnet.moderate.min <- as.vector(tapply((nnet.METs.when.on<6)&(nnet.METs.when.on>=3),interval.when.on.by.sec,sum)/60)
sum.by.interval$nnet.vigorous.min <- as.vector(tapply((nnet.METs.when.on>=6),interval.when.on.by.sec,sum)/60)
# sum.by.interval$nnet.min.act.min <- as.vector(tapply((nnet.acts.when.on=="minimal"),interval.when.on.by.sec,sum)/60)
# sum.by.interval$nnet.locomot.act.min <- as.vector(tapply((nnet.acts.when.on=="locomotion"),interval.when.on.by.sec,sum)/60)
# sum.by.interval$nnet.vigsp.act.min <- as.vector(tapply((nnet.acts.when.on=="vig sport"),interval.when.on.by.sec,sum)/60)
# sum.by.interval$nnet.house.act.min <- as.vector(tapply((nnet.acts.when.on=="household/other"),interval.when.on.by.sec,sum)/60)
temp <- get.bouts.info(data$nnet.METs, data$interval)
sum.by.interval$nnet.num.bouts <- temp[,"num.bouts"]
sum.by.interval$nnet.bout.hours <- temp[,"bout.hours"]
sum.by.interval$nnet.bout.MET.hours <- temp[,"bout.MET.hours"]
}
# update the status
status.update("Processing File... Done with NNet")
}
#Crouter et al 2-regression model
if(length(grep("Crouter",options$methods)) == 1) {
sum.by.10sec <- list()
#get total counts for each 10 second interval
sum.by.10sec$total.count <- tapply(data$counts, data$ten.sec, sum, na.rm = T)
# adjust for partial 10 second intervals
sum.by.10sec$total.count <- sum.by.10sec$total.count*10/table(data$ten.sec)
#get the minute corresponding to each 10 sec interval
sum.by.10sec$minute <- as.character(strptime(as.character(names(sum.by.10sec$total.count)),"%Y-%m-%d %H:%M"))
#compute the CV of the counts for the 10 sec intervals in each minute
sum.by.min$CV.of.counts.per.10sec <- tapply(sum.by.10sec$total.count, sum.by.10sec$minute, function(x){ifelse(mean(x)==0|length(x)==1,0,100*(sd(x)/mean(x)))})
###compute the METs for each minute
# "default" to 1 - for resting
sum.by.min$Crouter.METs <- 1
n <- length(sum.by.min[,1])
#formula for non-resting counts and low CV
inds <- (1:n)[(sum.by.min$cpm > 50) & (sum.by.min$CV.of.counts.per.10sec > 0) & (sum.by.min$CV.of.counts.per.10sec <= 10)]
sum.by.min$Crouter.METs[inds] <- 2.379833*exp(0.00013529*sum.by.min$cpm[inds])
#formula for non-resting counts and high CV (or CV = 0)
inds <- (1:n)[(sum.by.min$cpm > 50) & ((sum.by.min$CV.of.counts.per.10sec == 0) | (sum.by.min$CV.of.counts.per.10sec > 10))]
#status.update(sum.by.min$cpm)
#status.update(sum.by.min$CV.of.counts.per.10sec)
sum.by.min$Crouter.METs[inds] <- 2.330519 +
(0.001646*sum.by.min$cpm[inds]) -
((1.2017e-7)*(sum.by.min$cpm[inds]^2)) +
((3.3779e-12)*(sum.by.min$cpm[inds]^3))
#get MET hours for each day
Crouter.METs.when.on <- sum.by.min[(onoffbymin == 1), "Crouter.METs"]
sum.by.day$Crouter.METhrs <- as.vector(tapply(Crouter.METs.when.on,day.when.on.by.min,sum)/60)
sum.by.day$Crouter.sedentary.min <- as.vector(tapply((Crouter.METs.when.on<1.5),day.when.on.by.min,sum))
sum.by.day$Crouter.light.min <- as.vector(tapply((Crouter.METs.when.on<3)&(Crouter.METs.when.on>=1.5),day.when.on.by.min,sum))
sum.by.day$Crouter.moderate.min <- as.vector(tapply((Crouter.METs.when.on<6)&(Crouter.METs.when.on>=3),day.when.on.by.min,sum))
sum.by.day$Crouter.vigorous.min <- as.vector(tapply((Crouter.METs.when.on>=6),day.when.on.by.min,sum))
temp <- get.bouts.info(sum.by.min$Crouter.METs, sum.by.min$day, units="min")
sum.by.day$Crouter.num.bouts <- temp[,"num.bouts"]
sum.by.day$Crouter.bout.hours <- temp[,"bout.hours"]
sum.by.day$Crouter.bout.MET.hours <- temp[,"bout.MET.hours"]
#if applicable, get MET hours for each sub interval of the day
if(length(interval.times) > 0) {
sum.by.interval$Crouter.METhrs <- as.vector(tapply(Crouter.METs.when.on,interval.when.on.by.min,sum)/60)
sum.by.interval$Crouter.sedentary.min <- as.vector(tapply((Crouter.METs.when.on<1.5),interval.when.on.by.min,sum))
sum.by.interval$Crouter.light.min <- as.vector(tapply((Crouter.METs.when.on<3)&(Crouter.METs.when.on>=1.5),interval.when.on.by.min, sum))
sum.by.interval$Crouter.moderate.min <- as.vector(tapply((Crouter.METs.when.on<6)&(Crouter.METs.when.on>=3),interval.when.on.by.min,sum))
sum.by.interval$Crouter.vigorous.min <- as.vector(tapply((Crouter.METs.when.on>=6),interval.when.on.by.min,sum))
temp <- get.bouts.info(sum.by.min$Crouter.METs, sum.by.min$interval, units="min")
sum.by.interval$Crouter.num.bouts <- temp[,"num.bouts"]
sum.by.interval$Crouter.bout.hours <- temp[,"bout.hours"]
sum.by.interval$Crouter.bout.MET.hours <- temp[,"bout.MET.hours"]
}
# update the status
status.update("Processing File... Done with Crouter")
}
# Freedson linear regression
if(length(grep("Freedson",options$methods)) == 1) {
est.mets.by.sec <- 1.439008 + (60*0.000795 * data$counts)
sum.by.min$Freedson.METs <- 1.439008 + (0.000795 * sum.by.min$cpm)
Freedson.METs.when.on <- sum.by.min[(onoffbymin == 1), "Freedson.METs"]
sum.by.day$Freedson.METhrs <- as.vector(tapply(Freedson.METs.when.on,day.when.on.by.min,sum)/60)
sum.by.day$Freedson.sedentary.min <- as.vector(tapply((Freedson.METs.when.on<1.5),day.when.on.by.min,sum))
sum.by.day$Freedson.light.min <- as.vector(tapply((Freedson.METs.when.on<3)&(Freedson.METs.when.on>=1.5),day.when.on.by.min,sum))
sum.by.day$Freedson.moderate.min <- as.vector(tapply((Freedson.METs.when.on<6)&(Freedson.METs.when.on>=3),day.when.on.by.min,sum))
sum.by.day$Freedson.vigorous.min <- as.vector(tapply((Freedson.METs.when.on>=6),day.when.on.by.min,sum))
sum.by.day$Freedson.sedentary.min.by.sec <- as.vector(tapply((est.mets.by.sec<1.5),data$day,sum))/60
sum.by.day$Freedson.light.min.by.sec <- as.vector(tapply((est.mets.by.sec<3)&(est.mets.by.sec>=1.5),data$day,sum))/60
sum.by.day$Freedson.moderate.min.by.sec <- as.vector(tapply((est.mets.by.sec<6)&(est.mets.by.sec>=3),data$day,sum))/60
sum.by.day$Freedson.vigorous.min.by.sec <- as.vector(tapply((est.mets.by.sec>=6),data$day,sum))/60
temp <- get.bouts.info(sum.by.min$Freedson.METs, sum.by.min$day, units="min")
sum.by.day$Freedson.num.bouts <- temp[,"num.bouts"]
sum.by.day$Freedson.bout.hours <- temp[,"bout.hours"]
sum.by.day$Freedson.bout.MET.hours <- temp[,"bout.MET.hours"]
#if applicable, get MET hours for each sub interval of the day
if(length(interval.times) > 0) {
sum.by.interval$Freedson.METhrs <- as.vector(tapply(Freedson.METs.when.on,interval.when.on.by.min,sum)/60)
sum.by.interval$Freedson.sedentary.min <- as.vector(tapply((Freedson.METs.when.on<1.5),interval.when.on.by.min,sum))
sum.by.interval$Freedson.light.min <- as.vector(tapply((Freedson.METs.when.on<3)&(Freedson.METs.when.on>=1.5),interval.when.on.by.min,sum))
sum.by.interval$Freedson.moderate.min <- as.vector(tapply((Freedson.METs.when.on<6)&(Freedson.METs.when.on>=3),interval.when.on.by.min,sum))
sum.by.interval$Freedson.vigorous.min <- as.vector(tapply((Freedson.METs.when.on>=6),interval.when.on.by.min,sum))
temp <- get.bouts.info(sum.by.min$Freedson.METs, sum.by.min$interval, units="min")
sum.by.interval$Freedson.num.bouts <- temp[,"num.bouts"]
sum.by.interval$Freedson.bout.hours <- temp[,"bout.hours"]
sum.by.interval$Freedson.bout.MET.hours <- temp[,"bout.MET.hours"]
sum.by.interval$Freedson.sed.to.gt.sed.trans <- temp[,"sed.to.gt.sed.trans"]
}
# update the status
status.update("Processing File... Done with Freedson")
}
# "Other" linear regression - cutpoints specified
if(length(grep("Other",options$methods)) == 1) {
SedentaryCutpoint <- as.numeric(options[["SedentaryCutpoint"]])
X3METCutpoint <- as.numeric(options[["X3METCutpoint"]])
X6METCutpoint <- as.numeric(options[["X6METCutpoint"]])
beta.0 <- (3*X6METCutpoint - 6*X3METCutpoint)/(X6METCutpoint - X3METCutpoint)
beta.1 <- 3/(X6METCutpoint - X3METCutpoint)
sum.by.min$OtherLM.METs <- apply(as.matrix(beta.0 + (beta.1 * sum.by.min$cpm)), 1, function(x) { return(max(x, 1.1)) })
sum.by.min[sum.by.min$cpm <= SedentaryCutpoint, "OtherLM.METs"] <- 1.1
OtherLM.METs.when.on <- sum.by.min[(onoffbymin == 1), "OtherLM.METs"]
sum.by.day$OtherLM.METhrs <- as.vector(tapply(OtherLM.METs.when.on,day.when.on.by.min,sum)/60)
sum.by.day$OtherLM.sedentary.min <- as.vector(tapply((OtherLM.METs.when.on<1.5),day.when.on.by.min,sum))
sum.by.day$OtherLM.light.min <- as.vector(tapply((OtherLM.METs.when.on<3)&(OtherLM.METs.when.on>=1.5),day.when.on.by.min,sum))
sum.by.day$OtherLM.moderate.min <- as.vector(tapply((OtherLM.METs.when.on<6)&(OtherLM.METs.when.on>=3),day.when.on.by.min,sum))
sum.by.day$OtherLM.vigorous.min <- as.vector(tapply((OtherLM.METs.when.on>=6),day.when.on.by.min,sum))
temp <- get.bouts.info(sum.by.min$OtherLM.METs, sum.by.min$day, units="min")
sum.by.day$OtherLM.num.bouts <- temp[,"num.bouts"]
sum.by.day$OtherLM.bout.hours <- temp[,"bout.hours"]
sum.by.day$OtherLM.bout.MET.hours <- temp[,"bout.MET.hours"]
sum.by.day$OtherLM.sed.to.gt.sed.trans <- temp[,"sed.to.gt.sed.trans"]
#if applicable, get MET hours for each sub interval of the day
if(length(interval.times) > 0) {
sum.by.interval$OtherLM.METhrs <- as.vector(tapply(OtherLM.METs.when.on,interval.when.on.by.min,sum)/60)
sum.by.interval$OtherLM.sedentary.min <- as.vector(tapply((OtherLM.METs.when.on<1.5),interval.when.on.by.min,sum))
sum.by.interval$OtherLM.light.min <- as.vector(tapply((OtherLM.METs.when.on<3)&(OtherLM.METs.when.on>=1.5),interval.when.on.by.min,sum))
sum.by.interval$OtherLM.moderate.min <- as.vector(tapply((OtherLM.METs.when.on<6)&(OtherLM.METs.when.on>=3),interval.when.on.by.min,sum))
sum.by.interval$OtherLM.vigorous.min <- as.vector(tapply((OtherLM.METs.when.on>=6),interval.when.on.by.min,sum))
temp <- get.bouts.info(sum.by.min$OtherLM.METs, sum.by.min$interval, units="min")
sum.by.interval$OtherLM.num.bouts <- temp[,"num.bouts"]
sum.by.interval$OtherLM.bout.hours <- temp[,"bout.hours"]
sum.by.interval$OtherLM.bout.MET.hours <- temp[,"bout.MET.hours"]
sum.by.interval$OtherLM.sed.to.gt.sed.trans <- temp[,"sed.to.gt.sed.trans"]
}
# update the status
status.update("Processing File... Done with Other Linear Model")
}
# Write results to a file
if(options$newFile == "true") {
# if it's the first entry in the file, include column headers
write.table(sum.by.day,file=paste(RESULTS_DIR,"session",options$sessionID,"-results.csv",sep=""),sep=",",row.names=F, qmethod="double")
if(length(interval.times) > 0) {
write.table(sum.by.interval,file=paste(RESULTS_DIR,"session",options$sessionID,"-intervalresults.csv",sep=""),sep=",",row.names=F, qmethod="double")
}
write.table(on.off.record,file=paste(RESULTS_DIR,"session",options$sessionID,"-onrecord.csv",sep=""),sep=",",row.names=F, qmethod="double")
} else {
# if it's not the first entry, don't include column headers
write.table(sum.by.day,file=paste(RESULTS_DIR,"session",options$sessionID,"-results.csv",sep=""),append=TRUE,sep=",",row.names=F, col.names=F, qmethod="double")
if(length(interval.times) > 0) {
write.table(sum.by.interval,file=paste(RESULTS_DIR,"session",options$sessionID,"-intervalresults.csv",sep=""),append=TRUE,sep=",",row.names=F, col.names=F, qmethod="double")
}
write.table(on.off.record,file=paste(RESULTS_DIR,"session",options$sessionID,"-onrecord.csv",sep=""),append=TRUE,sep=",",row.names=F,col.names=F,qmethod="double")
}
# output a "success" message to be sent to the browser
cat("\n<status>success</status>\n<message> File processed successfully </message>\n</root>")
# update the status
status.update("Complete")