forked from tum-ewk/d2ix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
80 lines (63 loc) · 2.68 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from d2ix import Model
from d2ix import ModifyModel
from d2ix import PostProcess
MODEL = 'MESSAGE_Indonesia'
SCEN = 'Indonesia baseline'
BASE_XLS = 'input/modell_data.xlsx'
MANUAL_PAR_XLS = 'input/manual_input_parameter.xlsx'
F_HIST_Y = 2010
F_MOD_Y = 2020
L_MOD_Y = 2030
HIST_RANGE = 1
MOD_RANGE = 5
VERBOSE = False
RUN_CONFIG = 'config/run_config.yml'
def run_scenario():
# launch the IX modeling platform using a local database
model = Model(model=MODEL, scen=SCEN, annotation='first model test',
base_xls=BASE_XLS, manual_parameter_xls=MANUAL_PAR_XLS,
historical_data=True, first_historical_year=F_HIST_Y,
first_model_year=F_MOD_Y, last_model_year=L_MOD_Y,
historical_range_year=HIST_RANGE, model_range_year=MOD_RANGE,
run_config=RUN_CONFIG, verbose=VERBOSE, yaml_export=False)
# Example on how to access and edit parameters manually if neccessary
# data_par = model.get_parameter(par='demand')
# model.set_parameter(par=data_par, name='demand')
scenario = model.model2db()
scenario.solve(model='MESSAGE', case='di2x_example')
model.create_timeseries(scenario)
model.close_db()
def modify_scenario():
mod_model = ModifyModel(run_config=RUN_CONFIG, model=MODEL, scen=SCEN,
xls_dir='input/scen2xls', file_name='data.xlsx',
verbose=VERBOSE)
mod_model.scen2xls(version=None)
mod_model.xls2model(annotation=None)
scenario = mod_model.model2db()
scenario.solve(model='MESSAGE')
mod_model.create_timeseries(scenario)
mod_model.close_db()
def run_postprocessing(version=None):
# Crate an instance of the d2ix post process class:
# Post process for a specific scenario: model, scen, version
pp = PostProcess(RUN_CONFIG, MODEL, SCEN, version)
# Load results for
results = pp.get_results()
# Prepare data for plotting
df = pp.create_plotdata(results)
# Create plots
tecs = ['coal_ppl', 'bio_ppl', 'electricity_imp', 'slack_electricity']
pp.barplot(df=df, filters={'technology': tecs, 'variable': ['ACT']},
title='ACT - PPL')
pp.barplot(df=df, filters={'technology': tecs, 'variable': ['CAP']},
title='CAP - PPL')
pp.barplot(df=df, filters={'technology': tecs, 'variable': ['CAP_NEW']},
title='CAP_NEW - PPL')
if __name__ == '__main__':
# Option1: create a model from scratch
run_scenario()
run_postprocessing(version=None)
# Option 2: download a scenario from the db and write it to a xlsx file
# this file can then be edited and uploaded again.
# modify_scenario()
# run_postprocessing(version=None)