-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_transfer.py
180 lines (142 loc) · 6.15 KB
/
model_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import tempfile
import yaml
from airflow.decorators import dag, task
from airflow.exceptions import AirflowNotFoundException
from airflow.models import Variable
from airflow.models.connection import Connection
from airflow.operators.python import PythonOperator
from airflow.models.param import Param
import pendulum
from decors import get_connection, remove, setup
from utils import LFSC, RFSC, ssh_download, walk_dir
try:
from mlflow.client import MlflowClient
except ImportError:
print("Unable to import mlflow")
default_args = {
"owner": "airflow",
}
def transfer_model(local_client, remote_client):
for experiment in local_client.search_experiments():
print("Processing experiment ", experiment.experiment_id, experiment.name)
# check if it already exists:
lst = remote_client.search_experiments(
filter_string=f"name = '{experiment.name}'"
)
if not lst:
print("Creating experiment")
# , artifact_location='http://localhost:5000/')
remote_id = remote_client.create_experiment(experiment.name)
else:
print("Experiment exists")
remote_id = lst[0].experiment_id
print("Remote experiment id", remote_id)
runs = local_client.search_runs(experiment_ids=[experiment.experiment_id])
for run in runs:
remote_run = remote_client.create_run(
experiment_id=remote_id, start_time=run.info.start_time
)
remote_run_id = remote_run.info.run_id
print("Processing run:", run.info.run_id, "->", remote_run_id)
for metric in run.data.metrics:
metric_history = local_client.get_metric_history(
run_id=run.info.run_id, key=metric
)
print(f"Got metric history for {metric} length={len(metric_history)}")
remote_client.log_batch(run_id=remote_run_id, metrics=metric_history)
print("Params:", run.data.params)
for n, v in run.data.params.items():
remote_client.log_param(run_id=remote_run_id, key=n, value=v)
# tags if any?
artifacts = local_client.list_artifacts(run_id=run.info.run_id)
# mlflow.set_tracking_uri('http://localhost:5000')
with tempfile.TemporaryDirectory() as tmpdirname:
print("created temporary directory", tmpdirname)
for art in artifacts:
local_client.download_artifacts(
run_id=run.info.run_id, path=art.path, dst_path=tmpdirname
)
remote_client.log_artifact(
run_id=remote_run_id,
local_path=os.path.join(tmpdirname, art.path),
)
remote_client.set_terminated(remote_run_id)
print("-" * 10)
@dag(
default_args=default_args,
schedule=None,
start_date=pendulum.today(),
tags=["example", "model repo"],
params={
"source": Param("/tmp/", type="string"),
}
)
def mlflow_model_transfer():
@task()
def load(connection_id, **kwargs):
params = kwargs["params"]
target = os.path.join(
Variable.get("working_dir", default_var="/tmp/"), "mlruns"
)
source = os.path.join(params.get("source", "/tmp/"), "mlruns")
ssh_hook = get_connection(conn_id=connection_id, **kwargs)
sftp_client = ssh_hook.get_conn().open_sftp()
sclient = RFSC(sftp_client)
mappings = list(walk_dir(client=sclient, path=source, prefix=""))
for fname in mappings:
localname = fname.replace(source, target)
print("Processing", fname, "-->", localname)
di = os.path.dirname(localname)
os.makedirs(di, exist_ok=True)
# sftp_client.get(remotepath=fname, localpath=localname)
ssh_download(sftp_client=sftp_client, remote=fname, local=localname)
return target
@task
def convert_artifact_locations(location, **kwargs):
# BashOperator with something like that would do probably as well:
# find . -name "*.yaml" -exec sed -i 's/source/notebooks/\/tmp\/myro/g' {} \;
# we are a little bit more flexible and error prone by not verifing the initial location
fscllient = LFSC()
metas = [
m
for m in walk_dir(client=fscllient, prefix="", path=location)
if m.endswith("meta.yaml")
]
for meta in metas:
print("Converting", meta)
with open(meta) as f:
ct = yaml.safe_load(f)
if not ct:
continue
for key, vals in ct.items():
if isinstance(vals, str) and vals.startswith("file://"):
bname = os.path.basename(vals)
vals = f"file://{os.path.join(location, bname)}"
ct[key] = vals
with open(meta, "w") as f:
yaml.dump(ct, f)
return location
@task()
def register_local2remote(location, **kwargs):
try:
connection = Connection.get_connection_from_secrets("my_mlflow")
except AirflowNotFoundException as _:
print("Please define the mlflow connection 'my_mlflow'")
return -1
mlflow_url = f"http://{connection.host}:{connection.port}"
print("Will be using remote mlflow @", mlflow_url)
local_client = MlflowClient(tracking_uri=location, registry_uri=location)
remote_client = MlflowClient(tracking_uri=mlflow_url, registry_uri=mlflow_url)
transfer_model(local_client=local_client, remote_client=remote_client)
setup_task = PythonOperator(python_callable=setup, task_id="setup_connection")
a_id = setup_task.output["return_value"]
location = load(connection_id=a_id)
converted = convert_artifact_locations(location=location)
cleanup_task = PythonOperator(
python_callable=remove, op_kwargs={"conn_id": a_id}, task_id="cleanup"
)
setup_task >> location >> converted >> register_local2remote(
location=converted
) >> cleanup_task
dag = mlflow_model_transfer()