-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvideo_gemini.py
33 lines (27 loc) · 1.46 KB
/
video_gemini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from utils.stream import generate_content_from_image
# imports gemini/model_setup.py & gemini/auth_gemini.py
from utils.read_prompt import read_prompt_from_markdown
from video.collage_builds import generate_collages_from_video, cleanup_collage_directory
import os
def vision_model(video_file_path, target_frame_rate, prompt_path):
# Process video to create collages and get the directory where they are saved
collage_directory = generate_collages_from_video(video_file_path, target_frame_rate)
# Process each collage in the given directory with a specific prompt
collages = sorted(os.listdir(collage_directory), key=lambda x: int(x.split('_')[-1].split('.')[0]))
prompt = read_prompt_from_markdown(prompt_path)
responses = []
for collage in collages:
image_path = os.path.join(collage_directory, collage)
response = generate_content_from_image(image_path, prompt)
responses.append(f"{response}")
print(f"Response for {collage}: {response}")
# Optionally, clean up the collage directory after processing
cleanup_collage_directory(collage_directory)
return responses
# Example usage (commented out since this script is to be used as a module):
# video_file_path = 'public/AdobeStock_607123108_Video_HD_Preview.mov'
# target_frame_rate = 27
# prompt_path = 'prompts/narrations/bay_areav2.md'
# responses = vision_model(video_file_path, target_frame_rate, prompt_path)
# for response in responses:
# print(response)