-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunServer.py
123 lines (84 loc) · 3.29 KB
/
runServer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import matplotlib.pyplot as plt
import emcee
import corner
from funcs import *
import csv
def runMCMC(p, t, rv, rvErr, outfile, niter=10000, nwalkers=50):
"""
Run the MCMC Orbital fit to Spectroscopic RV Observations
Input
-----
p : ndarray
Orbital parameters. See RV model in funcs.py for order
t, rv, rvErr : MxNdarray
times, RV, and RV errors of the data.
arranged as a list of lists
len(array) = number of observing devices
outfile : string
name of output file where MCMC chain is stored
niter : int, optional
number of MCMC iterations to run. Default = 10,000
nwalkers : int, optional
number of MCMC walkers in modeling. Default = 50
Returns
------
String stating "MCMC complete"
(Outputs MCMC chain into file labeled whatever input into variable: outfile)
"""
ndim = len(p)
#start walkers in a ball near the optimal solution
startlocs = [p + initrange(p, 6) * np.random.randn(ndim) for i in np.arange(nwalkers)]
#run emcee MCMC code
#run both data sets
sampler = emcee.EnsembleSampler(nwalkers, ndim, logprob, args = [t, rv, rvErr])
#clear output file
ofile = open(outfile, 'w')
ofile.close()
#run the MCMC...record parameters for every walker at every step
for result in sampler.sample(startlocs, iterations = niter, storechain = False, threads = 2):
pos = result[0]
iternum = sampler.iterations
ofile = open(outfile, 'a')
#write iteration number, walker number, and log likelihood
#and value of parameters for the step
for walker in np.arange(pos.shape[0]):
ofile.write('{0} {1} {2} {3}\n'.format(iternum, walker, str(result[1][walker]), " ".join([str(x) for x in pos[walker]])))
ofile.close()
#keep track of step number
mod = iternum % 100
if mod == 0:
print iternum
print pos[0]
return "MCMC complete"
t, rv, rvErr = readObservations('./HD102509/HD102509_yahalomiMarch21.orb', True)
'''
#set first guess of parameters for modeling
#p = [period, ttran, ecosomega, esinomega, K, gamma,...]
p = [3677, 48667, 0.84, -0.26, 4.4, 42]
# p = [...gamma_offset1, gamma_offset2, gamma_offset3...]
for i in range(1, len(t)):
p.append(1)
# p = [...jitterSqrd1, jitterSqrd2, jitterSqrd3,...]
for i in range(0, len(t)):
p.append(0.0)
#median parameters from L79 first run
p = [ 3.67959833e+03, 4.88297491e+04, 7.42153203e-01, -2.25073992e-01,
4.57461506e+00, 4.14003163e+01, 2.21742301e-01, 5.60983043e-01,
3.70576015e-01, 1.27090779e-01, 2.20538442e-01, 5.46693365e-01,
5.19543822e-01]
#median parameters for HD102509 10,000 step run
p = [ 7.16902685e+01, 4.30725785e+04, -0.0003, 0.0004,
30.094, 1.86, 1.86, 1.86,
1.86, 1.86, 1.86, 1.86,
2.11738201e-01, 5.27868681e-01, 4.84473006e-01, 1.05587322e-01,
5.18178767e-02, 8.50094542e-02, 9.69902369e-02]
'''
#median parameters for HD102509 100,000 step run w gammas instead of gamma_os
p = [ 7.16902791e+01, 4.30725716e+04, -2.27864352e-04, 4.68399935e-04,
3.00898058e+01, 1.86445675e+00, 1.77603777e+00, 1.28836824e+00,
7.16327739e-01, 9.74341232e-01, 6.93817102e-01, 4.04686472e-01,
3.96837830e-01, 2.78218700e-01, 4.31310021e-01, 1.22508258e-01,
2.91819070e-02, 7.35546530e-02, 9.58132551e-02]
#run MCMC
print runMCMC(p, t, rv, rvErr, './HD102509/chain_100000_gammas_negJit.txt', niter = 100000)