-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiLQGames-multi-agent.jl
114 lines (101 loc) · 4.42 KB
/
iLQGames-multi-agent.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
using iLQGames:
GeneralGame, ProximityCost, Unicycle4D, NPlayerUnicycleCost,
generate_nplayer_navigation_game, n_states, n_controls, xyindex, xindex,
SystemTrajectory, iLQSolver, uindex, transform_to_feedbacklin, cost, plot_traj,
plot_traj!, horizon, dynamics, player_costs, proximitycost, solve!, n_players,ControlSystem,
ravoid, trajectory!, samplingtime, initialtime, time_disc2cont, time_cont2disc, LinearSystem, AffineStrategy
import iLQGames: dx
using StaticArrays
using Random
using POMDPs: POMDPs
using LinearAlgebra
using Infiltrator
using Plots
using CairoMakie
using TimerOutputs
####################################################################
# Setup game variables for multiple agents - Done
# Initialise game instance - Done
# Solve for control actions(iLQSolver) - Done
####################################################################
const to = TimerOutput()
function unicycle_dynamics_solver(prev_state, controls, delta_t)
new_state = [0.0,0.0,0.,0.]
l = 3
new_state[1] = prev_state[1] + prev_state[4]*cos(prev_state[3])
new_state[2] = prev_state[2] + prev_state[4]*sin(prev_state[3])
new_state[3] = prev_state[3] + controls[1]
new_state[4] = prev_state[4] + controls[2]
return new_state
end
# generate a game
T_horizon = 10.
ΔT = 0.1
dt = 0.1
"--------------------------------- Unicycle4D ---------------------------------"
x01 = @SVector [-3., 0., 0., 0.]
x02 = @SVector [2., 4., -pi, 0.]
x03 = @SVector [-3., 4., -pi/6, 0.]
x04 = @SVector [3.0, 4., -pi, 0]
x05 = @SVector [10.0, 0, 0, 0]
x0 = vcat(x01, x02, x03, x04, x05)
# goal states (goal position of other player with opposite orientation)
xg1 = @SVector [3., 0., 0., 0.]
xg2 = @SVector [1., -1.5, pi/2, 0.]
xg3 = @SVector [3., -3., -pi/4, 0.]
xg4 = @SVector [-4., 0., 0, 0.]
xg5 = @SVector [-10.0, 0, 0.0, 0]
g = generate_nplayer_navigation_game(Unicycle4D, NPlayerUnicycleCost, T_horizon,
ΔT, xg1, xg2, xg3, xg4,xg5;
proximitycost=ProximityCost([2.0, 2.0, 2.0, 2.0, 2.0],
[50., 50.0, 50.0, 50.0, 50.0]))
dyn = dynamics(g)
nx = n_states(dyn)
nu = n_controls(dyn)
pcs = player_costs(g)
h = horizon(g)
zero_op = zero(SystemTrajectory{h, ΔT, nx, nu})
# quad_sanity_check(g)
# solve the lq game
solver = iLQSolver(g; state_regularization=20.0, control_regularization=20.0)
# - setup initial_strategy
steer_init(k::Int) = cos(k/h*pi) * deg2rad(0)
acc_init(k::Int) = -cos(k/h*pi)*0.1
γ_init = SizedVector{h}([AffineStrategy((@SMatrix zeros(nu, nx)),
(@SVector [steer_init(k), 0.7*acc_init(k),
steer_init(k), acc_init(k),
steer_init(k), acc_init(k),
steer_init(k), acc_init(k),
steer_init(k), acc_init(k)])) for k in 1:h])
store_x1,store_x2,store_x3,store_x4,store_x5 = [],[],[],[],[]
# loop starts here
@timeit to "Overall runs for iLQGames" for i = 0:dt:10
global x0, x01, x02, x03, x04, x05, nu, nx, k, h, zero_op, g, solver, γ_init, dyn, pcs, zero_op, store_x1, store_x2, store_x3, store_x4, store_x5
# generate initial operating point from simulating initial strategy
# solve the game
@timeit to "Single solve call" a,b,c = solve!(copy(zero_op), copy(γ_init), g, solver, SVector{20}(x0)) #converged, current_op, current_strategy
zero_op = b
# Call bicycle_dynamics_solver for 5 agents
x01 = unicycle_dynamics_solver(x01, SVector{2}(b.u[1][1:2]), dt)
x02 = unicycle_dynamics_solver(x02, SVector{2}(b.u[1][3:4]), dt)
x03 = unicycle_dynamics_solver(x03, SVector{2}(b.u[1][5:6]), dt)
x04 = unicycle_dynamics_solver(x04, SVector{2}(b.u[1][7:8]), dt)
x05 = unicycle_dynamics_solver(x05, SVector{2}(b.u[1][9:10]),dt)
print(i)
# store data
x0 = vcat(x01, x02, x03, x04, x05)
push!(store_x1, x01)
push!(store_x2, x02)
push!(store_x3, x03)
push!(store_x4, x04)
push!(store_x5, x05)
# update initial conditions(states and controls as this setup)
end
f = Figure(resolution = (1400, 1200))
Axis(f[1,1])
lines!([t[1] for t in store_x1],[t[2] for t in store_x1],label="Agent 1")
lines!([t[1] for t in store_x2],[t[2] for t in store_x2],label="Agent 2")
lines!([t[1] for t in store_x3],[t[2] for t in store_x3],label="Agent 3")
lines!([t[1] for t in store_x4],[t[2] for t in store_x4],label="Agent 4")
lines!([t[1] for t in store_x5],[t[2] for t in store_x5],label="Agent 5")
save("iLQG-MPC-5agents-0.1-exp2.png",f)