-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnstats.py
182 lines (146 loc) · 5.36 KB
/
nstats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import matplotlib
if __name__ == '__main__':
matplotlib.use('Agg')
import numpy as np
import pylab as plt
import os
import sys
import fitsio
from astrometry.util.fits import *
from astrometry.util.plotutils import *
bands = [1,2,3,4]
MU = ['m','u']
def collect_stats():
unwdir = 'data/unwise-comp'
T = fits_table('allsky-atlas.fits')
mx = 50
allcounts = init_stats()
update_stats(T, allcounts, unwdir, mx)
for band in bands:
for mu in MU:
fitsio.write('counts-%s-%i.fits' % (mu, band), allcounts[(band,mu)],
clobber=True)
def init_stats():
allcounts = {}
for band in bands:
for mu in MU:
allcounts[(band,mu)] = np.zeros((len(T), mx+1), np.int32)
return allcounts
def update_stats(T, allcounts, unwdir, mx, gz=True):
for ti,tile in enumerate(T.coadd_id):
for bi,band in enumerate(bands):
for mui,mu in enumerate(MU):
try:
fn = os.path.join(unwdir, tile[:3], tile,
'unwise-%s-w%i-n-%s.fits' % (tile, band, mu))
if gz:
fn += '.gz'
print (ti+1), 'of', len(T), ':', fn
if not os.path.exists(fn):
print 'No such file'
continue
N = fitsio.read(fn)
allcounts[(band,mu)][ti,:] = np.bincount(np.minimum(N, mx).ravel(), minlength=mx+1)
except:
import traceback
traceback.print_exc()
#collect_stats()
allcounts = {}
for band in bands:
for mu in MU:
fn = 'counts-%s-%i.fits' % (mu, band)
#fn = 'counts4-%s-%i.fits' % (mu, band)
c = fitsio.read(fn)
allcounts[(band,mu)] = c
T = fits_table('allsky-atlas.fits')
mx = 50
if True:
unwdir = 'data/unwise-4'
update_stats(T, allcounts, unwdir, mx, gz=False)
for band in bands:
for mu in MU:
fn = 'counts4-%s-%i.fits' % (mu, band)
fitsio.write(fn, allcounts[(band,mu)], clobber=True)
print 'Wrote', fn
ps = PlotSequence('nstats4')
order = dict([(b, []) for b in bands])
cc = ['b','g','r','m']
#for mu in MU:
for mu in ['u']:
for n in range(11):
plt.clf()
for iband,band in enumerate(bands):
#C = fitsio.read('counts-%s-%i.fits' % (mu,band))
C = allcounts[(band,mu)]
#print mu,band, C.shape
nz = C[:,n].ravel()
I = np.flatnonzero(nz > 0)
order[band].append(I)
if len(I) == 0:
print mu,'band',band, ': no images with >0 pixels with coverage', n
continue
nz = nz[I]
nbad = np.sum(nz > 1e3)
print mu, 'band', band, ':', nbad, 'images with >1000 pixels with coverage', n
J = np.argsort(-nz)
print 'worst:', ' '.join(T.coadd_id[I[J[:20]]])
print 'IDs:', band*20000 + I[J[:20]]
#plt.hist(C[:,n].ravel(), 100, histtype='step', color=cc[iband])
plt.hist(np.log10(nz), 100, range=(0,7), histtype='step', color=cc[iband])
plt.xlabel('log10 n pixels')
plt.ylabel('Number of images')
plt.title('Number of pixels with coverage = %i, %s' % (n, mu))
ps.savefig()
#sys.exit(0)
if False:
T = fits_table('allsky-atlas.fits')
listed = np.zeros(4*20000 + len(T), bool)
for n in range(8):
oo = []
for b in bands:
o = order[b][n] + b*20000
#print 'Band', b, ':', len(o)
onew = o[listed[o] == False]
oo.append(onew)
listed[o] = True
#oo.append(o + b*20000)
oo = np.hstack(oo)
fn = 'jobs-%02i.txt' % n
f = open(fn, 'w')
f.write('\n'.join(['%i'%i for i in oo]))
f.write('\n')
f.close()
print 'qdo load unwise4 %s --priority %i' % (fn, 20-n)
for mu in ['u']:
for n in range(21):
plt.figure(1)
plt.clf()
plt.figure(2)
plt.clf()
for iband,band in enumerate(bands):
#C = fitsio.read('counts-%s-%i.fits' % (mu,band))
C = allcounts[(band,mu)]
#print mu,band, C.shape
nz = C[:,:n+1].sum(axis=1)
I = np.flatnonzero(nz > 0)
if len(I) == 0:
print mu,'band',band, ': no images with >0 pixels with coverage <=', n
continue
nz = nz[I]
#nbad = np.sum(nz > 1e3)
#print mu, 'band', band, ':', nbad, 'images with >1000 pixels with coverage <=', n
nbad = np.sum(nz >= 1)
print mu, 'band', band, ':', nbad, 'images with >=1 pixels with coverage <=', n
#plt.hist(C[:,n].ravel(), 100, histtype='step', color=cc[iband])
plt.figure(1)
plt.hist(np.log10(nz), 100, range=(0,7), histtype='step', color=cc[iband])
plt.xlabel('log10 n pixels')
plt.ylabel('Number of images')
plt.figure(2)
plt.plot(T.ra[I], T.dec[I], '.', color=cc[iband])
plt.figure(1)
plt.title('Number of pixels with coverage <= %i, %s' % (n, mu))
ps.savefig()
plt.figure(2)
plt.title('Pixels with coverage <= %i, %s' % (n, mu))
ps.savefig()